ATTACHMENT C:

Control Technique Guideline Reasonably Available Control Technology Analysis

Control Technique Guideline (CTG) Source Category Analysis for 2015 8-hour Ozone NAAQS Reasonably Available Control Technology (RACT) Requirements

Prepared For:

Clark County Department of Environment and Sustainability
4701 West Russell Road, Suite 200
Las Vegas, NV 89118
(702) 455-5942

Prepared by: RTP Environmental Associates ("RTP") 304A West Millbrook Road Raleigh, North Carolina 27609

June 2024

TABLE OF CONTENTS

1.0	INTRODUCTION					
2.0	ATT	AINMEN	NT DATE REQUIREMENTS	2		
3.0 REASONABLY AVAILABLE CONTROL TECHNOLOGY REQUIR						
4.0	METHODOLOGY					
	4.1	Identif	ying CTG RACT Sources	5		
	4.2		ring Existing Emission Control Requirements To CTG Presum			
	7.2		Existing Emission Control Requirements 10 C10 11esum			
	4.3		ffectiveness Adjustment			
5.0	CTG	SOURC	E CATEGORY REVIEW	8		
	5.1	Surface	e Coating Operations	8		
		5.1.1	Aerospace Manufacturing and Rework Operations			
		5.1.2	Automobiles and Light-Duty Trucks Manufacturing and Rework			
			Operations	9		
		5.1.3	Automobile Refinishing			
		5.1.4	Coils			
		5.1.5	Fabric			
		5.1.6	Flat Wood Paneling			
		5.1.7	Large Appliances			
		5.1.8	Magnet Wire – Surface Coating			
		5.1.9 5.1.10	Metal Cans			
		5.1.10	Miscellaneous Metal Part and Plastic Coating—Surface Coating			
		5.1.11	Other Potential Metal Parts or Plastic Coating Surface Coating Or			
		3.1.12	Other Following Farts of Flastic Couring Surface Couring Of			
		5.1.13	Projected Metal and Plastic Parts CTG RACT VOC Emissions	1		
			Reductions	23		
		5.1.14	Paper			
		5.1.15	Other Potential Paper Coating Operators	24		
		5.1.16	Potential Paper CTGs RACT VOC Emissions Reductions			
		5.1.17	Boat and Shipbuilding			
		5.1.18	Wood Furniture	26		
	5.2	Solvent	t Users			
		5.2.1	Degreasing Operations – Solvent Metal Cleaning			
		5.2.2	Other Potential Degreasing Operators			
		5.2.3	Potential Degreasing CTG RACT VOC Emissions Reductions			
		5.2.4	Dry Cleaners			
		5.2.5	Industrial Adhesives.			
		5.2.6	Other Potential Industrial Adhesive Operators	38		

		3.2.	J	
		5.2.	8 Industrial Cleaning Solvents	39
		5.2.	9 Other Potential Industrial Cleaning Solvent Operators	.40
		5.2.	\mathcal{E}	4.0
			Reductions	
		5.2.	1	
		5.2.		
		5.2.	1	
	5		emical Processes	
		5.3.		_
		5.3.	J control of the cont	
		5.3.	\mathcal{E}	
		5.3.	4 Synthetic Organic Chemical Manufacturing Industry	.54
	5	.4 Pet	roleum Processes	56
		5.4.		
		5.4.	2 Other Potential Cutback Asphalt Operators	.56
		5.4.	3 Potential Cutback Asphalt CTG RACT VOC Emission Reductions	57
		5.4.	4 Gasoline Loading Terminals and Bulk Gasoline Plants	58
		5.4.	5 Other Potential Gasoline Terminal or Bulk Plant Operators	.60
		5.4.	6 Potential Gasoline Terminals and Bulk Plant CTG RACT Emissions	
			Reductions	
		5.4.		.64
		5.4.		
			RACT	
		5.4.	\mathcal{J}	
		5.4.	C	.65
		5.4.	11 Potential VOC Emissions Reductions from Petroleum Storage CTG RACT	66
		5.4.		
6.0	S	UMMAR	Y OF FINDINGS	70
7.0	R	EFEREN	NCES	78
	-			•,, 0
			LIST OF TABLES	
Table	1.	Businesse	es Potentially Engaged in Aerospace Surface Coating Operations	9
Table	2.	Vehicle S	Surface Coating VOC Emissions in ROP Inventory	10
Table	3.	Businesse	es Potentially Engaged in Flat Wood Paneling Surface Coating Operations	.14
			es Potentially Engaged in Large Appliance Surface Coating Operations	
			es Potentially Engaged in Magnet Wire Operations	
			es Potentially Engaged in Metal Can Surface Coating Operations	
			d Plastic Part Surface Coating VOC Emissions in ROP Inventory	
			es Potentially Engaged in Metal Parts or Plastic Coating Surface Coating	
			ns	21

July 2024 iii

Projected VOC Emission Reductions (tpd) from Metal and Plastic Parts Surface	
Coating Operations CTG RACT	
Business Potentially Engaged in Boat Manufacturing	.26
Businesses Potentially Engaged in Wood Furniture Surface Coating Operations	.27
Metal Solvent Degreasing VOC Emissions in ROP Inventory	.30
Metal Fabrication Businesses Potentially Engaged in Operating Degreasers	.31
Projected VOC Emissions Reductions (tpd) from Metal Solvent Degreasing CTG	
RACT	
Industrial Clean Solvent Presumptive CTG RACT Requirements	.40
Projected VOC Emissions Reduction from Industrial Cleaning Solvent CTG RACT.	
Graphic Arts VOC Emissions in ROP Inventory (Point Sources)	
Graphic Art Operations in ROP Inventory (Nonpoint Sources)	.43
Businesses with Potential Graphic Art Operations	
Polymer and Resin VOC Emissions in ROP Inventory	.52
Businesses Potentially Engaged in Polymer and Resin Operations	
Businesses Potential Engaged in Use of Cutback Asphalt	.56
	.60
Summary of CTG RACT Analysis: Certification of No Sources Operating in HA 21	
or Projected Emission Reduction (tpd) from CTG RACT Rules	.70
	Coating Operations CTG RACT

July 2024 iv

ACRONYMS AND ABBREVIATIONS

Acronyms

ACT Alternative Control Techniques

AQR Clark County Air Quality Regulations

CAA Clean Air Act

CFR Code of Federal Regulations CTG Control Technology Guideline

DES Division of Air Quality

DES Department of Environment and Sustainability
EPA United States Environmental Protection Agency

FR Federal Register
HA Hydrographic Area
HAP hazardous air pollutants
NAFB Nellis Air Force Base

NAAQS National Ambient Air Quality Standards

NEI National Emissions Inventory

NESHAP National Emission Standards for Hazardous Air Pollutants

NOx nitrogen oxide(s)

NSPS New Source Performance Standards

NSR New Source Review
PET polyethylene terephthalate

PTE potential to emit

RACM Reasonably Available Control Measures
RACT Reasonably Available Control Technology
RTP RTP Environmental Associations, Inc.
SIC Standard Industrial Classification
SCC Source Classification Codes

SIP state implementation plan

SOCMI Synthetic Organic Chemical Manufacturing Industry

TRI Toxic Release Inventory
VOC volatile organic compounds

Abbreviations

ft foot gal gallon liter lb pound

psi pounds per square inch

tpd tons per day tpy tons per year

July 2024 v

EXECUTIVE SUMMARY

On January 5, 2023, the U.S. Environmental Protection Agency (EPA) reclassified Hydrographic Area (HA) 212 (Las Vegas Valley) in Clark County, Nevada, from a marginal to a moderate nonattainment area (88 FR 775). This reclassification triggered new state implementation plan (SIP) requirements for HA 212, including a requirement to "provide for implementation of reasonably available control technology (RACT)" for volatile organic compound (VOC) emissions from any stationary source category for which EPA issued a Control Technique Guideline (CTG) (42 U.S.C. 7502 & 7511a, §§ 172(c)(1) & 182(b)(2)).

This document summarizes research conducted by RTP Environmental Associates, Inc ("RTP") for the Clark County Department of Environment and Sustainability, Division of Air Quality ("DES"), and DES' conclusions based on that research.

RTP reviewed the point and nonpoint emissions inventory for HA 212 for the Clark County Department of Environment and Sustainability, Division of Air Quality (DES), along with business license information and minor and major New Source Review (NSR) permits, and conducted web searches to identify stationary sources that belong to CTG source categories. RTP conducted these searches for the source categories representing numerous EPA-issued CTGs.¹

RTP made one of the following findings:

- 1. No stationary sources in the CTG source category operate within HA 212.
- 2. One or more stationary sources are operating within HA 212, and a CTG RACT rule is required for the category.
- 3. One or more stationary sources are operating within HA 212, and an existing SIP-approved RACT rule already provides for implementation of VOC RACT.

RTP determined that there are stationary sources operating within HA 212 for 11 CTG source categories. DES's existing rules already implement RACT for five of these categories, but new CTG RACT rules are needed for six CTG source categories. DES, however, elected to update existing regulations that apply to four CTG source categories to improve clarity or consistency with federal rules. DES submits a negative certification for the remaining CTGs because no stationary sources from the CTG source category operate within HA 212, based on the findings of the stationary source identification study.

July 2024 vi

_

¹ Some CTGs cover multiple source categories, while others update or add to requirements for previously issued CTGs. The dry cleaners CTG (EPA-450/2-78-050) applied to a solvent that EPA removed from the VOC air pollutant definition, so that CTG is no longer applicable. The general surface coating CTG (EPA-450/2-76-028) identified no specific source category, and EPA did not identify a presumptive RACT control level for this CTG or the automobile refinishing CTGs (EPA-450/3-88-009).

The source category for which DES already has a rule implementing RACT is surface coating of paper, which has only one source operating in HA 212. The four source categories for which DES elected to update existing rules are:

- 1. Gasoline loading terminals;
- 2. Bulk gasoline plants
- 3. Bulk gasoline terminals; and
- 4. Petroleum storage.

The six source categories for which DES will promulgate new CTG RACT rules are:

- 1. Metal and plastic parts surface coating;
- 2. Metal solvent cleaning (degreasing);
- 3. Industrial cleaning solvents;
- 4. Industrial adhesives;
- 5. Graphic arts (flexographic, offset lithographic and letterpress printing);
- 6. Cutback asphalt;

RTP estimates that the six new CTG RACT rules will result in 7.75 tons per day (tpd) of VOC emissions reductions. Gasoline service stations, and bulk gas plants and terminals are already subject to the CTG VOC RACT control level through requirements of other applicable rules. DES elected to include no emissions reductions credit for revising these rules, but may consider additional emissions reductions for these rules and other new CTG RACT rules in a future SIP actions for improved rule effectiveness estimates. Chapter 6 of this report summarizes RTP's findings.

July 2024 vii

1.0 INTRODUCTION

On June 4, 2018, the U.S. Environmental Protection Agency (EPA) designated a portion of Clark County (Hydrographic Area (HA) 212) as a nonattainment area for the 2015 8-hour ozone National Ambient Air Quality Standards (NAAQS) based on a design value that exceeded the 0.07 ppm standard (*Federal Register*, vol. 83, p. 25776 [83 FR 25776]). EPA classified the nonattainment area as "marginal." HA 212 is in a central location in the county and includes the Las Vegas Valley (Figure 1).

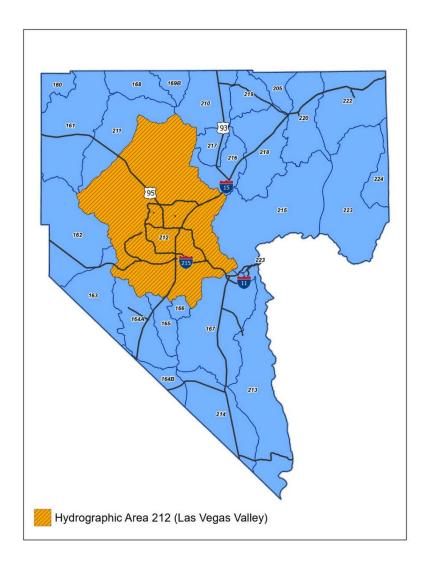


Figure 1. Nonattainment Area (HA 212) in Clark County, Nevada.

July 2024

2.0 ATTAINMENT DATE REQUIREMENTS

The effective date of the nonattainment designation for HA 212 was August 3, 2018. EPA's implementation rule for the 2015 ozone NAAQS (40 CFR Part 51, Subpart CC) provides that a marginal nonattainment area must achieve attainment within three years of the effective date of the nonattainment designation. Accordingly, EPA required DES to bring HA 212 into attainment with the 2015 8-hour ozone NAAQS by August 3, 2021.

Whether HA 212 attained the NAAQS by the due date is based on the 2018–2020 design value. DES identified 28 exceedance days at area monitors during this period that it believes were caused by exceptional events, such as wildfires or stratospheric ozone intrusions. In accordance with EPA's exceptional events rule (40 CFR Part 50.14), DES submitted 17 exceptional event demonstrations that included data, modeling, and other information to EPA Region 9 to support excluding the monitoring data for these 28 events from the calculation of HA 212's ozone design value for the 2018–2020 ozone seasons.

After reviewing the data, Region 9 found the weight of evidence did not support a finding that emissions from exceptional events caused exceedances of the ozone NAAQS in HA 212 on June 19–20, 2018; May 6, 2020; May 9, 2020; June 22, 2020; and June 26, 2020 (88 FR 775). Region 9 deferred reviewing requests for data exclusion on other dates after determining that any findings on those dates would not affect a decision on HA 212's attainment status or qualification for a one-year extension for demonstrating attainment. When monitoring data for these dates is not excluded from design value calculations, HA 212's 2018–2020 design value equals 0.074 ppm. This value is above the 0.070 ppm design value required to demonstrate attainment of the 2015 8-hour ozone NAAQS (as required by 40 CFR Part 50.19) by HA 212's attainment date.

Under Section 181(b) of the Clean Air Act (CAA), EPA must reclassify a nonattainment area to the next higher ozone classification if the area fails to meet an attainment date (referred to as a "bump-up"). On July 22, 2022, EPA proposed to bump up HA 212 from marginal to moderate nonattainment (87 FR 43764); it finalized that finding on January 5, 2023 (88 FR 775).

This reclassification triggered additional state implementation plan (SIP) requirements for HA 212, including a requirement to impose reasonably available control technology (RACT) requirements on certain stationary sources. This document addresses the VOC RACT requirements for stationary sources that are part of a source category identified in one of EPA's Control Technique Guidelines (CTGs) (herein referred to as "CTG RACT").

3.0 REASONABLY AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS

Under Section 182 of the Act, a moderate nonattainment area must apply RACT to reduce VOC emissions from each source category for which EPA issued a CTG. Sections 108 and 183 of the Act direct EPA to issue CTGs to provide air pollution control agencies with information on reducing VOC emissions from certain source categories, including emissions reduction benefits, cost of installation, and environmental impact of the control technology. EPA issued a total of 46 CTG documents: several CTGs address emissions control for more than one source category, while others update emissions control information addressed in older CTG documents.

In general, CTGs provide the "presumptive norm" for minimum VOC control requirements for specific categories of sources (44 FR 53761). Sources falling into a source category for which EPA has published a CTG are referred to as "CTG sources." EPA recommends that air pollution control agencies adopt regulations consistent with the applicability thresholds and control level in the CTGs; however, agencies have the freedom to "judge the feasibility of imposing the recommended controls on particular sources, and adjust the controls accordingly" (88 FR 62998).

CAA Section 182(b)(1)(A)(ii)(II) requires RACT for all major sources of ozone precursors, and Section 182(f) extends this major source requirement to NO_x major sources. For a moderate nonattainment area such as HA 212, "major source" is defined as a stationary source that emits, or has the potential to emit, at least 100 tons per year (tpy) of either VOC or NO_x .

EPA has not issued CTGs for NO_x emissions from source categories, so no RACT requirements apply to NO_x source categories because of an EPA-issued CTG. Instead, EPA issues Alternative Control Techniques (ACT) guidance for some NO_x source categories. ACTs do not establish a presumptive level of emissions control; rather, they provide information on potential control measures and costs. They are a resource for determining RACT for individual major sources and for Reasonably Available Control Measure (RACM) requirements, which are separate requirements under Section 172(c) of the Act.

EPA codified the RACT SIP requirements for the 2015 ozone NAAQS in its Ozone Implementation Rule (40 CFR Part 51, Subpart CC).² Because EPA bumped up HA 212 to a moderate classification for the 2015 8-hour ozone NAAQS, Clark County must now meet these RACT SIP requirements. This document discusses only the CTG RACT source obligations that DES considered for inclusion in the SIP; it does not address the major source NO_x and VOC RACT requirements.

Under EPA's RACT regulation and guidance, an air pollution control agency must adopt a CTG RACT rule if are CTG sources operating within the nonattainment area. The applicability thresholds differ based on the type of CTG source category but, in general and at a minimum, EPA excludes stationary sources emitting less than 15 lb/day (approximately 3 tpy) of VOC before consideration of emissions control from the CTG source categories.

July 2024 3

_

If no stationary source would be subject to a given CTG RACT requirement, EPA accepts a negative declaration for that CTG source category. If a stationary source located in HA 212 emits VOC above the presumptive RACT applicability threshold, then DES may certify that an existing SIP regulation already satisfies CTG RACT requirements for the source category, if appropriate. If no current regulation applies to the source category or an applicable regulation does not meet presumptive RACT requirements, then DES must adopt a CTG RACT rule for the source category.

For each CTG, this document reviews available information to determine whether a stationary source within a CTG source category is operating within HA 212 and emitting above the presumptive RACT applicability threshold. When a new regulation is required to implement CTG RACT, this document provides an estimate of emissions reductions that could result from adopting the presumptive RACT recommended by EPA in the CTG.

4.0 METHODOLOGY

4.1 IDENTIFYING CTG RACT SOURCES

RTP employed four search methods to determine whether any stationary source within a CTG source category operated in the Clark County nonattainment area, including:

- 1. Reviewing emissions inventory information;
- 2. Searching business licenses obtained through the Secretary of State website and the Clark County Business License Office;
- 3. Consulting permitting and enforcement staff and permits issued for minor sources; and
- 4. Performing internet searches using key terms from the source category.

RTP used the emissions inventory prepared to support the moderate area Rate of Progress ("ROP") demonstration" ("ROP Inventory") (Ramboll 2024). This inventory includes both point source and nonpoint source emissions. If the ROP Inventory included emissions associated with a CTG source category at levels higher than a *de minimis* amount (3 tpy), DES concluded that a CTG RACT is needed for the CTG source category.

For business licenses, RTP downloaded and consolidated three databases from the Nevada Secretary of State website that contained license information for Las Vegas, North Las Vegas, and Henderson businesses. RTP added existing lists of known businesses in the dry cleaners, gasoline dispensing, printers, and surface coating source categories, along with businesses identified through "yellow pages" web searches. RTP conducted a geospatial screening to identify stationary sources located within HA 212.

Additional business information came from the Clark County Business License Office, but the locational screening was not reperformed after receiving this additional set of information. It is possible that some stationary sources on the master list do not operate within HA 212; further screening of identified stationary sources would be needed to verify source locations. For this iteration, the RTP conservatively assumed that all business licenses provided by the Clark County Business License Office operate in HA 212.

RTP screened each item on the master list to identify whether the business might fall within a CTG source category. To conduct this screening, RTP relied on business names, website searches, and license information. Section 5 provides information on stationary sources that could belong to a CTG source category. In some cases, RTP located information on a business in its minor source permitting database and used the permit to confirm the source was below CTG source applicability thresholds. This type of search, however, was not conducted for all CTG source category lists.

In some cases, no positive identification of CTG sources could be made from business licenses because there was no information on manufacturing methods and potential emissions. Accordingly, DES determined that inclusion of a business name on a potential CTG source list

was not enough to determine a CTG RACT was necessary for a given source category. DES will continue to evaluate the information in the lists for future outreach efforts.

4.2 COMPARING EXISTING EMISSION CONTROL REQUIREMENTS TO CTG PRESUMPTIVE NORMS

RTP reviewed EPA's CTG for each source category with a confirmed operating source within HA 212. It then reviewed permits for the stationary source(s) and applicable federal and SIP regulations to determine whether the permit or regulations already required a level of VOC emissions reduction consistent with EPA's presumptive norm for the CTG source category.

Notably, SIP-approved Sections 12.1.3.6 and 12.4.3 of the Clark County Air Quality Regulations (AQRs) already require certain stationary sources to comply with RACT. Section 12.0 defines RACT as "the lowest emissions limitation that a particular source is capable of meeting by the application of control technology that is reasonably available, considering technological and economical feasibility." This RACT requirement applies when a stationary source proposes to construct or modify an emission unit and increase potential emissions (1) at a minor stationary source by greater than a significant rate, or (2) at a major stationary source by greater than the minor NSR significant level for a pollutant. For NO_x and VOC emissions increases, the significant levels are 20 tpy (AQRs 12.1.1 & 12.4.2.1). (These applicability thresholds, however, are generally higher than the presumptive applicability thresholds in EPA's CTGs.)

RTP estimated potential VOC emission reductions assuming the presumptive RACT level of control unless it determined a source or source category was already meeting the presumptive RACT level of control, in which case RTP assumed no additional emissions reductions.

4.3 RULE EFFECTIVENESS ADJUSTMENT

Rule effectiveness is an adjustment made to emissions factor estimates to reflect the degree of emissions reduction that is expected in practice. The adjustment factor recognizes that not all stationary sources will maintain compliance 100% of the time for a variety of reasons. EPA's initial rule effectiveness policy required a 20% default reduction in projected emissions reductions, unless the state or local agency could demonstrate a higher percentage was appropriate (52 FR at 45044, 45060). EPA subsequently revised this policy in 2005, following a workgroup process initiated in 2004 (EPA 2005).

The new policy recommends using a rule effectiveness adjustment that falls within one of five different ranges for point sources and one of three different ranges for nonpoint sources, depending on a variety of factors. The low end of the range of rule effectiveness requires at least a 30% adjustment to emissions projections and the high end requires no adjustment assuming 100% rule effectiveness.

Factors considered in selecting a range and then a specific value from within the range include the agency's experience enforcing the rule, degree of monitoring and reporting required, the frequency of inspections for the category, among others. These factors rely on data collected

during past rule implementation. Where a state or local agency lacks information on a specific source category, EPA allows the agency to rely on studies conducted by other jurisdictions.

Applying this rule effectiveness policy to rules to a specific area without a compliance history presents a challenge because neither the agency nor sources have implementation experience from which data can be used to develop an appropriate adjustment factor. For purposes of projecting future emissions reductions that will result from the CTG RACT, DES considered its overall enforcement performance as reflected in EPA, Region 9's State Review Framework Study (EPA 2021a). This study audited DES' enforcement program for 2019.

EPA found that Clark County conducted all compliance inspections within the negotiated frequencies of every two years for Title V major sources, every three years for "Mega-sites", and every five years for other sources. EPA only identified 3 of 16 areas in which DES performed below the reported national average for a measurement metric. In other words, DES outperformed other jurisdictions on the audit greater than 80% of the time. These enforcement statistics support selecting a rule effectiveness value in the higher range for both point and nonpoint sources.

Each CTG Rule will also include a registration or permitting program, along with robust monitoring, recordkeeping, and reporting requirements to assure continuous compliance. This factor also points to selecting a rule effectiveness value from the higher range.

Nevertheless, DES recognizes that there are numerous considerations for deciding on a rule effectiveness value, for which DES simply lacks data. For example, DES lacks data associated with media publicity of enforcement actions, and sources have not yet developed their operator training programs for work practice standards for which data is available. In addition, EPA identified areas related to DES' identification and reporting of high priority violations (HPV) for which DES could improve inspector training and implementation.

Given the subjective nature of the rule effectiveness determination, and lack of complete data, unless otherwise explained in specific subsections of Section 5.0, DES elected to apply a 20% adjustment to estimated emissions reductions assuming 80% of the projected emissions reductions will be realized from the CTG Rule. This value is in Range 4 for point sources, and Range 2 for nonpoint sources, and likely under-estimates emissions reductions that will be realized in practice.

DES may re-evaluate these adjustments in a future SIP action and opt to increase the projected rule effectiveness supported by the enforcement audit or additional information.

5.0 CTG SOURCE CATEGORY REVIEW

The following sections discuss the results of DES's source identification analysis for four main groupings of EPA's CTGs:

- 1. Surface coating;
- 2. Solvent users;
- 3. Petroleum operations; and
- 4. Chemical compounds.

5.1 SURFACE COATING OPERATIONS

5.1.1 Aerospace Manufacturing and Rework Operations

CTG: Control of VOC Emissions from Coating Operations at Aerospace Manufacturing and Rework Operations (Aerospace CTG)

EPA Document Number: EPA-453/R-97-004

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources in the Aerospace CTG source category operating within HA 212.

Discussion:

The Aerospace CTG, issued in 1997, recommends emissions controls for the manufacture, rework, and repair of aerospace vehicles and components when those operations have a potential to emit (PTE) VOC of greater than 25 tpy. Aerospace vehicles include airplanes, helicopters, missiles, rockets, and space vehicles. The CTG excludes regulation of rework operations involving space vehicles; rework operations performed on antique aerospace vehicles or components; research and development; quality control; laboratory testing; and electronic parts and assemblies (except cleaning and coating of completed assemblies).

The following SCC codes are associated with this source category:

- 40202401-99 Point Source Aircraft
- 2401075000 Nonpoint Source: Surface Coating Aircraft; Solvent Industrial Surface Coating and Solvent Use

The 1997 NEI and the ROP Inventory contain no reported emissions for these SCC codes.

Nellis Air Force Base's (NAFB's) total VOC PTE from surface coating is 27.55 tpy (DES 2021). Over 7 tpy of the PTE, however, is associated with miscellaneous metal parts coating, not aerospace coating. NAFB operates seven spray operations for aerospace parts coating, and their

total PTE is less than 20 tpy VOC. Therefore, Nellis Air Force Base is not subject to this CTG RACT because its PTE is below the presumptive RACT applicability threshold.

Using business licenses, RTP identified 6 businesses (one potentially operating in two locations) whose company name or website information implied they may engage in manufacture or rework of aerospace products, listed in Table 1.

Table 1. Businesses Potentially Engaged in Aerospace Surface Coating Operations

Name	Address	City	ZIP
AMW Precision	4120 W Windmill Ln #101	Las Vegas	89139
Apex Aviation	1410 Jet Stream Drive #100	Henderson	89052
CB Manufacturing Company	6500 W Sunset Rd	Las Vegas	89118
Dolphin Machine	2939 Brookspark Dr	North Las Vegas	89030
Dolphin Machine	15 W Brooks Ave	North Las Vegas	89030
Progressive Alloy Steels Unlimited	6335 N Hollywood Blvd #130-135	North Las Vegas	89115
Textron Aviation	4511 W Cheyenne Ave	North Las Vegas	89032
Vegas Metal Finishing	55 W Mayflower Ave	North Las Vegas	89030

DES searched its minor stationary source records for these facilities. DES permitted AMW Precision LLC with a PTE of 6.4 tpy VOC, but terminated its permit in 2015. None of the remaining sources hold minor source permits or Part 70 Operating permits. Each facility's VOC PTE is below the Aerospace CTG applicability threshold (25 tpy), so they are not part of the CTG source category.

5.1.2 Automobiles and Light-Duty Trucks Manufacturing and Rework Operations

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)

EPA Document Number: EPA-450/2-77-008

CTG: Control Techniques Guidelines for Automobile and Light-Duty Truck Assembly Coatings (Vehicle CTG 1)

EPA Document Number: EPA-R-08-006

CTG: Reduction of Volatile Organic Compound Emissions from Automobile Body Refinishing (Vehicle CTG 2)

EPA Document Number: EPA-453/R-94-031

Conclusion:

DES submits a negative declaration for these CTGs because there are no identified stationary sources in the source categories operating within HA 212.

Discussion:

EPA issued the first of three CTGs for the automotive industry in 1977, which contained RACT recommendations for both the automotive industry and other source categories. EPA followed this multi-category CTG with another CTG specific for automotive and light duty truck assembly coating and then the Vehicle CTG 2 in 2006. All CTGs recommend emissions controls for surface coating operations at vehicle assembly plants that manufacture passenger cars with a 12-person capacity or less and/or light duty trucks rated at 8,500 lb. or less and have emissions exceeding 15 lb/day before emissions controls. The CTGs apply only to new automobile manufacturing, not autobody collision repair shops or other rework facilities.

The following SCC codes are associated with this source category:

- 40201601-32 Point Source: Surface Coating –Auto & Light Trucks
- 40201699 Point Source: Surface Coating Auto & Light Trucks, Not Otherwise Classified

RTP located four point sources reporting emissions under an associated SCC code in the ROP Inventory listed in Table 2.

Facility Name	Facility ID	Description	scc	2017 Summer Weekday (tpd)	2026 Summer Weekday (tpd)
Republic Services Transfer Station	1087	Spray painting booths	40201601	0.0132	0.0132
Manheim Nevada	15839	Paint booth	40201601	0.0121	0.0121
Ritchie Brothers	16172	Paint booth	40201601	0.0026	0.0026
Shelby American	17347	Spray booth	40201606	0.0042	0.0044

Table 2. Vehicle Surface Coating VOC Emissions in ROP Inventory

None of these facilities, however, are engaged in the assembly of auto and light duty trucks. The Republic Services Transfer Station performs rework painting; Manheim Nevada and Ritchie Brothers perform automobile retouching as part of auction house services; and Shelby American modifies already assembled Ford Mustangs. Moreover, all four facilities' daily emissions are far below the CTG's 15 lb/day VOC applicability threshold. RTP's search located no business licenses for facilities engaged in assembly of autos and light-duty trucks, and a web search of U.S. automobile manufacturers showed no assembly plants within Clark County. While the nonpoint source ROP Inventory includes emissions for the category, DES concludes that these emissions are not part of this source category and will be considered in the miscellaneous metal and plastic parts CTG source category.

Accordingly, there are no confirmed stationary sources in the Vehicle CTGs categories.

5.1.3 Automobile Refinishing

CTG: Reduction of Volatile Organic Compound Emissions from Automobile Refinishing (Auto Refinishing CTG)

EPA Document Number: EPA-450/3-88-009

Conclusion:

No CTG RACT rule is necessary for this source category because (1) EPA did not establish a presumptive RACT for this source category in a CTG, and (2) EPA's federal rule for auto refinishing coating manufacturers (40 CFR Part 59, Subpart B) supersedes this source category's requirement for RACT.

Discussion:

EPA published the auto refinishing CTG in 1988 to provide technical information on available techniques to reduce emissions through use of material replacement, higher transfer efficiency spray guns, and add-on emissions controls. Unlike other CTGs, in which EPA makes specific recommendations for RACT control levels, this CTG provides only an overview of potential emission reduction strategies for air pollution control agencies to consider in developing industry regulations. EPA promulgated its own federal rule to regulate this industry with RACT, so no CTG RACT rule is required.

5.1.4 Coils

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)

EPA Document Number: EPA-450/2-77-008

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources in the Coils Surface Coating source category operating within HA 212.

Discussion:

EPA issued this multicategory CTG in 1977 with a compilation of CTG RACT recommendations for several source categories, including coils. The CTG establishes recommended emissions control levels for surface coating of flat metal sheets or strips that come in rolls or coils. EPA also codified a New Source Performance Standard (NSPS) for this category in 1982 (40 CFR Part 60, Subpart TT).

The following SCC codes are associated with this source category:

• 2401045000–2401045370 Nonpoint Source: Solvent – Industrial Surface Coating and Solvent Use; Metal Coil

• 40201803–40201899 Point Source: Solvent – Industrial Surface Coating – Metal Cans and Coils

RTP found no sources in the 1997 NEI or the ROP Inventory related to these SCC codes, nor did it find any sources that match the category through a business license search.

Accordingly, DES submits a negative declaration for this CTG source category.

5.1.5 Fabric

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)

EPA Document Number: EPA-450/2-77-008

Conclusion:

DES submits a negative declaration for this CTG source category because there are no identified stationary sources in the Fabric Surface Coating source category operating within HA 212.

Discussion:

EPA published recommended RACT requirements for Fabric Surface Coating operations in this multicategory CTG issued in 1977. Fabric surface coating involves applying coating to fabric, for example to impart a protective coating or waterproof the fabric. It does not include application of vinyl plasticol.

The following SCC codes are associated with this source category:

- 2401010000–10999 Nonpoint Source: Surface Coating Fabric
- 40201101–199 Point Source: Surface Coating Fabric

There are no nonpoint source emissions in the ROP Inventory for the Fabric Surface Coating source category. The ROP Inventory lists two point sources: McCarran (Reid) International Airport and the New York-New York Hotel & Casino (owned by MGM Resorts). Both facilities have emissions that are at least 40% below the CTG's 15 lb/day VOC applicability threshold for RACT, so the sources' VOC emissions fall below the CTG source category applicability threshold.

RTP located approximately 25 businesses in the custom apparel industry, which frequently use vinyl graphics to decorate fabric. But these emissions are low and unlikely to exceed a de minimis value of 15 lb/day VOC. In addition, many operations are likely to be exempt from the CTG because it excludes the application of vinyl plasticol.

Accordingly, DES finds no confirmed stationary source in this CTG source category.

5.1.6 Flat Wood Paneling

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume VII: Factory Surface Coating of Flat Wood Paneling (Flat Wood Paneling CTG 1)

EPA Document Number: EPA-450/2-77-008

CTG: Control Techniques Guidelines for Flat Wood Paneling Coatings (Flat Wood Paneling CTG 2)

EPA Document Number: EPA-453/R-06-004

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources in the Flat Wood Paneling source category operating within HA 212.

Discussion:

EPA issued two CTGs for the Flat Wood Paneling source category, in 1977 and 2006. The CTGs establish presumptive RACT for production of prefinished wood construction products made from plywood, particleboard, and hardboard. Today, these products are often referred to as engineered woods. The first CTG established presumptive RACT requirements based on the length of material coated; the second established VOC per gallon limitations on coating materials and work practices for cleaning operations.

In the Flat Wood Paneling CTG, EPA identified businesses in the flatwood manufacturing industry as operating under Standard Industrial Classification (SIC) codes 2431, 2435, 2436, 2492, and 2499. EPA noted, however, that very few flat wood manufacturers perform coating operations in their plants.

The following SCC codes are associated with this source category:

- 2401015000 Nonpoint Source: Factory Finished Wood All Solvent Types
- 40202101–99 Point Source: Coatings, Solvents, and Adhesives Flatwood Products

No point source emissions for the Flat Wood Paneling source category are included in the ROP Inventory, while the nonpoint source inventory includes only a *de minimis* level of emissions for 2026 (0.0088 tpd).

RTP identified two companies that advertise door manufacturing, listed in Table 3. As noted, few companies producing flat panel wood products operate surface coating operations at their manufacturing plants, and DES is not aware of any such facilities operating in HA 212. DES issued a permit to Panda Windows & Door Operations, but terminated it in 2014 due to low throughput and emissions below permitting thresholds (VOC PTE was listed as 0 tpy). The second facility also lacks a permit, presumably because emissions are below permitting thresholds.

Accordingly, DES concludes that neither source is part of this CTG source category and the nonpoint source emissions reporting in the inventory are *de minimis*.

Table 3. Businesses Potentially Engaged in Flat Wood Paneling Surface Coating Operations

Name	Address	City	ZIP	URL
Panda Windows & Doors Operations	3415 Bellington Rd	North Las Vegas	89030	Panda Windows and Doors
Solar Screen Factory	3560 Polaris Ave #41	Las Vegas	89103	Solar Screen Factory

5.1.7 Large Appliances

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume V: Surface Coating of Large Appliances (Large Appliance CTG 1)

EPA Document Number: EPA-450/2-77-034

CTG: Control Techniques Guidelines for Large Appliance Coatings (Large Appliance CTG 2)

EPA Document Number: EPA 453/R-07-004

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources in the Large Appliance source category operating within HA 212.

Discussion:

EPA issued two CTGs for the Large Appliance source category, in 1977 and 2007. In addition, EPA promulgated an NSPS for the source category in 1982 (40 CFR Part 60, Subpart SS) and a National Emission Standard for Hazardous Air Pollutants (NESHAP) in 2002 (40 CFR Part 63, Subpart NNNN). The CTG recommends VOC emissions control for paints, sealants, caulks, inks, adhesives, and maskants used in the appliance manufacturing industry that emit more than 2.7 tpy of VOC. The Large Appliance CTG source category covers manufacturers that surface-coat large appliances, including metal ranges, ovens, microwave ovens, refrigerators, freezers, washers, dryers, dishwashers, water heaters, and trash compactors manufactured for household, commercial, or recreational use, along with the parts associated with such products, including doors, lids, casings, panels, etc.

The following SCC codes are associated with this source category:

40201402–499 Point Source: Large Appliances – Surface Coating Nonpoint Source: Large Appliances – All Solvent Types

RTP located no emissions for the Large Appliance Category in either the 1997 NEI or the ROP Inventory. Through an internet search, RTP located two companies that may produce large appliances, listed in Table 4.

Table 4. Businesses Potentially Engaged in Large Appliance Surface Coating Operations

Name	Address	Description	URL
American Range Manufacturing Inc	4580 N Walnut Rd	Cooking equipment	American Range
Char Products LLC	2915 Losee Rd #106	Manufacturing	Char Appliances

DES conducted site visits at both facilities and determined that neither is part of the Large Appliance source category.

5.1.8 Magnet Wire – Surface Coating

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources – Volume IV: Surface Coating of Insulation of Magnet Wire

EPA Document Number: EPA-450/2-77-033

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources for the Magnet Wire source category operating within HA 212.

Discussion:

EPA published the CTG for the Magnet Wire source category in 1977. It recommends emissions control requirements for wire enameling, drying ovens, after varnish, and enamel applied to wire.

The following SCC codes are associated with this source category:

•	40201502	Point Source: Magnet Wire – Cleaning
•	40201531 40201503	Point Source: Magnet Wire – General Point Source: Magnet Wire – Mixing
•	40201504	Point Source: Magnet Wire – Storage
•	40201501	Point Source: Magnet Wire - Curing
•	40201505	Point Source: Magnet Wire - Cleanup
•	40201599	Point Source: Magnet Wire – Not Otherwise Cla

The 1997 NEI includes one point source emitting under SCC code 40201501: GE Transport, now owned by Wabec Industries. RTP reviewed the original permit application, the current permit application, and the emission inventory submissions, then DES reached out to the source to confirm whether activities at the source fall within the CTG source category; they do not. DES concludes that this stationary source does not operate a surface coating operation that falls under the Magnet Wire CTG source category. RTP identified one other potential emissions source for this source category, listed in Table 5; after investigation, DES found that emissions from this business are below the CTG applicability threshold.

Table 5. Businesses Potentially Engaged in Magnet Wire Operations

Name	Address	Description
Fi Car Audio, LLC	4535 W Russell Rd Ste 1	A/V equipment manufacturing—speaker systems manufacturing

5.1.9 Metal Cans

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)

EPA Document Number: EPA-450/2-77-008

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources for the Metal Can source category operating within HA 212.

Discussion:

In 1977, EPA issued a multicategory CTG with a compilation of CTG RACT recommendations for several source categories, including Metal Cans Surface Coating. With respect to metal cans, this CTG requires emissions control for surface coating (both two- and three-piece fabrication). Specifically, the CTG recommends emissions controls for the application of sheet basecoat, over varnish, interior body spray, exterior end spray or roll coating, side seam spraying, and end sealing compound.

The following SCC codes are associated with this source category:

• 40201702–1799 Point Source: Surface Coating Metal Cans

• 402017–36 & 37 Point Source: End Sealing Compound

• 40201802–40201899 Point Source: Solvent – Industrial Surface Coating: Metal Cans

• 2401040000 Surface Coating: Metal Cans

The ROP Inventory contains no emissions for sources operating under these SCC codes.

After reviewing business licenses, RTP identified 10 businesses involved in manufacturing or bottling of beverages (such as water and soft drinks) that could involve metal can coating, listed in Table 6.

Table 6. Businesses Potentially Engaged in Metal Can Surface Coating Operations

Name	Address	City	ZIP
Aquatic CO.	201 N Meadow Valley Rd	Моара	89025
Crystal Peaks, Inc.	1300 N Las Vegas Blvd	Las Vegas	89101

Graham Packaging PET Technologies, Inc.	875 American Pacific Dr.	Henderson	89014
Mr Alkaline Water	1263 E Silverado Ranch Blvd Ste Unit 109	Las Vegas	89183
Pepsi Las Vegas	6500 W Sunset Rd	Las Vegas	89118
Premium Waters Inc	3355 N Lamb Blvd	Las Vegas	89115
Purified Water To Go	4155 S Buffalo Dr Ste Suite 107	Las Vegas	89147
Reyes Coca-Cola Bottling LLC	230 N Mojave Rd	Las Vegas	89101
Wester Group Packaging	333 E Gowan Rd	N Las Vegas	89030
Wirtz Beverage Nevada	1849 W Cheyenne Ave	Las Vegas	89102

To further refine the list of potential CTG sources, RTP reviewed information available on company websites and in EPA's Air Toxic Release Inventory (TRI). Aquatic Co. is listed in EPA's TRI database as an emitter of styrene and methyl methacrylate, both associated with plastics manufacturing; therefore, DES concludes Aquatic Co. does not coat metal cans. Likewise, Graham Packing identifies as a polyethylene terephthalate (PET) plastic bottle manufacturer, and its website contains no information on metal can coating. Water To Go, Premium Waters, Inc., Wester Group Packaging, and Mr. Alkaline advertise use of only plastic and/or glass bottles. Wirtz Beverage Nevada lists itself as a distributor of fine wine, spirits, and beer, but describes no manufacturing activities.

One of the remaining bottling companies handles bottling for Pepsi-Cola. DES issued Pepsi-Cola a permit in 2013 documenting a VOC PTE of less than 1 tpy. DES determined that the remaining two facilities, one of which bottles for Coca-Cola, use bottles, not cans, in their operations.

In 2022, DES issued a construction permit to Real Estate Projects LLC for construction of an aluminum can manufacturing facility with surface coating operations. The company did not construct this facility and DES withdrew the permit.

After reviewing all available information, DES determined that there are no stationary sources operating metal can surface coating operations within HA 212.

5.1.10 Metal Furniture

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources–Volume III: Surface Coating of Metal Furniture (Metal Furniture CTG 1)

EPA Document Number: EPA-450/2-77-032

CTG: Control Techniques Guidelines for Metal Furniture Coatings (Metal Furniture CTG 2)

EPA Document Number: EPA 453/R-07-005

Conclusion:

DES submits a negative declaration for this CTG source category because there are no identified stationary sources in the Metal Furniture source category operating within HA 212.

Discussion:

EPA issued two CTGs for the Metal Furniture industry, one in 1977 and another in 2005. EPA has also issued a NSPS: 40 CFR Part 60, Subpart EE–Standards of Performance for Surface Coating of Metal Furniture.

The following SCC codes are associated with this source category:

• 40202001–40202099 Point Source: Metal Furniture

• 2401025000 Nonpoint Source: Metal Furniture:

RTP identified no point source emissions in the ROP inventory reported for metal furniture operations. For nonpoint sources, the ROP Inventory includes 0.1763 tpd of VOC emissions. One furniture company, identified through the yellow pages, Urban Wood & Steelworx, includes metal in its name and its website shows furniture with mixed media. This company, however, identifies itself as a "custom" furniture maker, and produces furniture in low volumes that would fall below a reasonable applicability threshold for regulation of VOC from this source category. (Many states, for example, exempt sources with emissions between 10–100 tpy VOC PTE from compliance with state regulations for this CTG source category.)

Having identified no stationary source that would fall into this category after reviewing minor source permits, inspection records, and conducting internet and yellow page searches, RTP further reviewed the estimation methodology EPA used to project emissions for this source category. EPA relied on national sales data distributed to local areas based on population growth projections. This methodology simply assumes sources operating in the area rather than confirming presence of the industry.

To further explore the possibility of metal furniture manufacturing businesses operating in HA 212, RTP reviewed emissions inventory information from the 2020 NEI which posts slightly lower emissions for this category. For the 2020 NEI, EPA used employment data from the U.S. Census Bureau to estimate emissions. For SCC 2401025000 estimates, EPA used employment data from NAICS codes 337124, 337127, 337214, and 33215, rather than population growth projections (EPA 2020).

The NAICS association provides a NAICS and SIC crosswalk available for download at: https://www.naics.com/product/sic-naics-cross-references/. This crosswalk indicates that these NAICS codes cover industries operating under SIC codes 34, 38, 39 (as well as SIC 25). These SIC codes are included in the miscellaneous metal and plastic parts coatings CTG RACT rule. Accordingly, because RTP was unable to identify any metal furniture operations in HA 212, DES assumes that the emissions reported in the ROP inventory for Metal Furniture based on

national sales data of surface coating materials reflect use of coating material in miscellaneous metal and plastic parts surface coating operations.

Accordingly, DES concludes that there are no verified source subject to this CTG operating within HA 212.

5.1.11 Miscellaneous Metal Part and Plastic Coating—Surface Coating

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources—Volume VI: Surface Coating of Miscellaneous Metal Parts and Products (Metal and Plastic Parts CTG 1)

EPA Document Number: EPA-450/2-78-015

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources-Volume VI: Surface Coating of Miscellaneous Metal Parts and Products (Metal and Plastic Parts CTG 2)

EPA Document Number: EPA 453/R-08-003

Conclusion:

DES will promulgate a CTG RACT rule to reduce emissions from the Metal and Plastic Parts source category.

Discussion:

In June 1978, EPA issued its first CTG document (1978 CTG) for controlling VOC emissions from surface coating of miscellaneous metal parts and plastic products. EPA issued another CTG in 2008. In January 1988, EPA promulgated an NSPS: 40 CFR Part 60, Subpart TTT—Standards of Performance for Industrial Surface Coating: Surface Coating of Plastic Parts for Business Machines. In February 1994, EPA issued an Alternative Control Techniques (ACT) document for controlling VOC emissions from surface coating of automotive and transportation plastic parts and business machine plastic parts. EPA also promulgated two NESHAPs relevant to this CTG source category: 40 CFR Part 63, Subpart MMMM—National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products and 40 CFR Part 63, Subpart PPPP—National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products.

The CTG applies to miscellaneous metal and plastic parts manufacturers that coat the parts produced and have VOC emissions greater than 3 tpy from use of paints, sealants, caulks, inks, and maskants. The category includes manufacturers producing such things as, but not limited to, fabricated metal products, molded plastic parts, small and large farm machinery, commercial and industrial machinery and equipment, automotive or transportation equipment, interior or exterior automotive parts, construction equipment, motor vehicle accessories, bicycles and sporting goods, toys, recreational vehicles, pleasure craft (e.g., recreational boats), extruded aluminum structural components, railroad cars, heavier vehicles, lawn and garden equipment, business machines, laboratory and medical equipment, electronic equipment, steel drums, and metal pipes.

The source category does not include stationary sources that are part of another CTG source category, such as architectural coatings (e.g., for steel bridges), automobile refinishing, fiberglass boats, and industrial adhesives. However, this CTG also applies to motor vehicle cavity wax, sealers, deadeners, gasket/gasket sealing material, underbody coatings, trunk interior coating, bedliners, and lubricating wax/compound used at a facility that is not an automobile or light-duty truck assembly coating facility.

The following SCC codes are associated with this source category:

•	40202201	Point Source: Surface Coating – Plastic Parts
•	40202501-04	Point Source: Surface Coating Operation – Misc. Metal Parts
•	40202532	Point Source: Surface Coating – Conveyor – Single Dip
•	40202531	Point Source: Surface Coating – Conveyor – Single Flow
•	40202535	Point Source: Surface Coating – Conveyor – Two Coat
•	40202533	Point Source: Surface Coating – Conveyor – Single Spray
•	40202434	Point Source: Surface Coating – Conveyor – Two Coat Flow and Spray
•	40202436	Point Source: Surface Coating – Conveyor – Two Coat Spray
•	40202505	Point Source: Surface Coating – Equipment Cleanup
•	40202437	Point Source: Surface Coating – Manual Spray and Air Dry
•	40202599	Point Source: Surface Coating – Other – Not Classified
•	40202510-12	Point Source: Surface Coating – Prime Coat
•	40202542-46	Point Source: Surface Coating – Single Coat Application
•	40202521-25	Point Source: Surface Coating – Topcoat Application
•	30303951	Point Source: Metallurgy Parts – Coatings to Sintered Parts
•	30303901-2	Point Source: Metallurgy Parts – Ovens
•	30901600-99	Point Source: Metal Pipe Coating of Metal Parts
•	30900301-04	Point Source: Abrasive Cleaning of Metal Parts
•	30901102-99	Point Source: Conversion Coating of Metal Products
•	2401025000	Nonpoint Source: Metal Furniture
•	2401065000	Nonpoint Source: Electronic and Electrical: SIC 36-363
•	2401090000	Nonpoint Source: Surface Coating: Misc. Manufacturing (SIC 33-39)
•	2401055000	Nonpoint Source: Machinery and Equipment: SIC 35
•	2401070000	Nonpoint Source: Motor Vehicles: SIC 371

• 2401075000 Nonpoint Source: Aircraft: SIC 372

As explained in Section 5.1.11, EPA allocated emissions for metal furniture coating based on nationwide sales and employment data related to NAICS codes that include industries operating under major group SIC codes 34, 38 and 39. Since RTP was unable to locate a metal furniture manufacturing operating in HA 212, DES assumes that any sales of metal coatings are associated with this category.

In addition to the nonpoint sources, there are four point sources from the ROP Inventory associated with the Metal and Plastic Parts Surface Coating source category, listed in Table 7.

,				
scc	Facility	2017 Emissions Inventory (tpy)	2017 Summer Weekday Emissions (t/d)	2026 Summer Weekday Emissions (tpd)
40202201	Universal Urethane	7.88	0.0216	0.0216
40202201	Plasticard Locktech	10.64	0.0292	0.0292
40202501	Nellis AFB surface coating	1.400	0.0038	0.0051
40202501	Preferred Laminations -surface coating	4.410	0.0121	0.0121
2401065000	Electronic and Electrical	17	0.0458	0.0560
2401090000	Misc. Manufacturing	40	0.1087	0.1266
2401055000	Machinery and Equipment: SIC 35	-5-	0.0143	0.0165
2401070000	Motor Vehicles: SIC 371	-6-	0.0161	0.0193
2401075000	Aircraft: SIC 372	0.1095	0.0003	0.0004
2401025000	Metal Furniture	56.00	0.1522	0.1763
	TOTAL	137.4395	0.4041	0.4631

Table 7. Metal and Plastic Part Surface Coating VOC Emissions in ROP Inventory

5.1.12 Other Potential Metal Parts or Plastic Coating Surface Coating Operators

Because this CTG source category affects numerous types of manufacturing operations, it could affect a variety of stationary sources. Table 8 lists businesses that might have operations subject to this CTG. In Section 5.2.2, which addresses the solvent metal degreasing source category, Table 13 lists stationary sources that deal with metal fabrication; sources in that table could also be subject to this CTG if they surface coat the fabricated metal.

Table 8. Businesses Potentially Engaged in Metal Parts or Plastic Coating Surface Coating Operations

Name	Address	Description
Bonaire USA LLC	3774 W Cheyenne Ave #100	Evaporative coolers
Builder's Best, Inc.	4975 N Pecos Rd	Vent hoods
Cart America, Inc.	4516 Mitchell St	Money carts

Name	Address	Description
Char Products LLC	2915 Losee Rd #106	Appliance manufacturing
Cole Kepro Int'l LLC	4170 Distribution Cir #103	Gaming units
Next Gaming LLC	4171 Distribution Cir #101	Game machine
Tri-Dim Filter Corp.	4980 Statz St #130 & 140	Air purifiers
American Range Manufacturing, Inc.	4580 N Walnut Rd North	Cooking equipment
Amigo Mobility International, Inc.	570 Corinthian Way	Wheelchairs
Ags LLC	6775 S Edmond St. #300	Slot machine maker
Ainsworth Game Technology, Inc.	5800 Rafael Rivera Way	Slot machine maker
Aristocrat Technologies, Inc.	3300 Birtcher Dr	Coin-operated gambling devices manufacturing
C B Tech	3101 Marion Dr #111	Hand and edge tool manufacturing - hammers, hand tools, manufacturing
Fi Car Audio LLC	4535 W Russell Rd #1	Audio and video equipment manufacturing - speaker systems manufacturing
Fortunet, Inc.	3901 Graphic Center Dr	Game machines
JCM American Corp.	925 Pilot Rd	Office machinery manufacturing - currency counting machinery manufacturing
SG Gaming, Inc.	6601 Bermuda Rd	Coin-operated gambling devices manufacturing
The Bright Group LLC	1660 Helm Dr #100	Slot machines manufacturing
Cannon Security Products	2895 W Capovilla Ave	Safes
Full Spectrum Laser LLC	6216 S Sandhill Rd	Laser cutting machines
Genesis Gaming Solutions, Inc.	1181 Grier Dr #G	Hardware for games
Genesis Gaming Solutions, Inc.	5845 Wynn Rd	Hardware for games
Paxiom Automation, Inc.	2037 E Maule Ave	Package machinery manufacturer
Promethium Limited	6885 Speedway Blvd #101	Design; unsure if manufacturer
Sabra Medtech LLC	6280 S Valley View Blvd	Surgical and wound care technologies
Shimadzu Scientific Instruments, Inc.	7102 Riverwood Drive	
Smart Bar USA LLC	7485 Dean Martin Dr #104	Automated cocktail dispenser manufacturer
Tamera Industries, Inc.	4350 Arville St #450	Barber shop and hair salon equip. manufacturer
Tamera Industries, Inc.	3325 W Oquendo Rd #B	Barber shop and hair salon equip. manufacturer
Varex Imaging Corporation	6811 Spencer St	X-ray machines
Zurety LLC	6160 N Hollywood Blvd #106	Appliance accessories
Creative Light Source, Inc.	4150 N Lamb Blvd #110	Lighting
LED Innovations, Inc.	5880 Wynn Rd	
Ardent Progressive Systems & Games LLC	2925 E Patrick Ln	Game maker

Name	Address	Description
Aruze Gaming America, Inc.	6900 S Decatur Blvd	Game maker
Sable Systems Int'l, Inc.	3840 N Commerce St	Medical appliances
Hovercam	6780 Paradise Rd	Teaching tools appliances
Integra Specialty Products, Inc.	3930 W Windmill Ln #100	Humid control product
Lift-All Company, Inc.	2629 E Craig Rd #K & L	
VSR Industries, Inc.	1937 Ramrod Ave	Manufacturing, assembly, and wholesale of slot machine cabinets

5.1.13 Projected Metal and Plastic Parts CTG RACT VOC Emissions Reductions

The CTG recommends specific pounds of VOC per gallon limitations for different coating types. (The list of recommended VOC coating limitations is extensive; consult the Metal and Plastics Parts CTG for more information on specific presumptive RACT recommendations.) EPA provides additional options for compliance through add-on emissions controls and work practices, estimating that compliance with recommendations for the Metal and Plastic Parts Surface Coating CTG would result in a 35% emissions reduction.

Nellis Air Force Base is already subject to VOC emissions limitations for surface coating in its Part 70 Operating Permit, and additional emissions reductions through RACT are unlikely. Accordingly, potential reductions are estimated for the remaining point and nonpoint source emissions assuming a 35% emissions reduction (Table 9). The 2026 summer day emissions are based on projections in the ROP Inventory. Additional emissions reductions from the Metal Parts CTG RACT could occur if additional sources are subject to the rule, but these emissions would not be credible in the attainment plan because they are not part of the ROP Inventory.

Table 9. Projected VOC Emission Reductions (tpd) from Metal and Plastic Parts Surface Coating Operations CTG RACT

Controllable 2026 VOC (tpy)	Control Efficiency	Rule Effectiveness	Projected Emissions Reductions (tpd)
0.46	35%	80%	0.13

5.1.14 Paper

CTG: Surface Coating of Paper (Paper Coating CTG 1)

EPA Document Number: EPA-450/2-77-008

CTG: Paper, Film, and Foil Coatings (Paper Coating CTG 2)

EPA Document Number: EPA 453/R-07-003

Conclusion:

DES certifies that existing SIP-approved regulations in Sections 12.1.3.6(b) & (c) and Section 12.1.4.1(f) meet the CTG RACT requirement for the only stationary source in this category operating within HA 212.

Discussion:

In 1977, EPA published a CTG for controlling VOC emissions from surface coating of paper, then issued an additional CTG in 2007 to recommend emissions control levels for paper, film, and foil coating. EPA also promulgated a 1983 NSPS (40 CFR Part 60, Subpart RR) and a 2002 NESHAP (40 CFR Part 63, Subpart JJJJ) that apply to paper coating operations. Paper Coating CTG 2 defines coating as "materials applied onto or impregnated into a substrate for decorative, protective, or functional purposes" (p. 17), applicable to an individual coating line that exceeds a VOC PTE of 25 tpy.

The following SCC codes are associated with this source category:

- 240103000–999 Nonpoint Source: Surface Coating Paper, Foil and Film
- 40201399 Point Source: Surface Coating Paper

Nonpoint source emissions in the ROP Inventory includes only *de minimis* emissions. There is one point source in the inventory: Catalina Plastic and Coating, now known as Nekoosa Coated Products, Inc. The Yellow Pages listing for this facility describes the company as a manufacturer of pressure-sensitive materials for the printing industry and window graphic film. Other products include pressure-sensitive vinyls, polyesters, acetates, and metalized films.³ Its minor NSR permit describes the stationary source as operating under SIC code 3861, so this business includes operations within the Paper Coating CTG source category. Its VOC PTE is 29.11 tpy.

5.1.15 Other Potential Paper Coating Operators

RTP found one other facility that could have operations that fall under this source category: Sofidel America Corp. This business manufactures toilet paper and napkins and operates under SIC code 2679. Review of its minor NSR permit, however, shows that the stationary source has a VOC PTE of 0 tpy. Accordingly, DES concludes that this stationary source is not part of the Paper Coating CTG source category.

5.1.16 Potential Paper CTGs RACT VOC Emissions Reductions

The presumptive RACT for Paper Coating CTG 1 is 2.9 lb. VOC/gal. coating. The presumptive RACT for Paper Coating CTG 2 is even more stringent, requiring a 90% emissions reductions or 0.08 lb. VOC/lb. coating coupled with work practice requirements to minimize VOC emissions from cleaning materials.

July 2024 24

-

³ Yellow Pages website available at https://www.yellowpages.com/las-vegas-nv/mip/catalina-graphic-films-458743641 (accessed 8/10/2023).

Nekoosa operates three coatings lines. DES determined that two lines have a VOC PTE above 25 tpy that, when originally constructed, triggered a RACT requirement under Section 12.1. This rule requires Nekoosa to comply with a combined average VOC content limit restriction of 0.012 lb. VOC/lb. coating and 0.076 lb. VOC/lb. epoxy. In addition, Nekoosa must comply with work practice requirements that ensure storage of VOC-containing materials, including cloths and rags in closed containers, and must clean equipment in a manner that minimizes VOC emissions.

This RACT requirement for coatings is 6.0 orders of magnitude more stringent than EPA's presumptive RACT recommendation for coatings, and the epoxy VOC content limit is slightly more stringent. Accordingly, DES determined that SIP-approved Sections 12.1.3.6(b)–(c) and 12.1.4.1(f) of Clark County's existing SIP-approved rules "provides for the implementation of [RACT]" for this source category (42 U.S.C. 7502 § 172(c)(1)). Since Nekoosa is already complying with SIP-approved RACT requirements, no additional emissions reductions are creditable in the attainment plan.

5.1.17 Boat and Shipbuilding

CTG: Control Techniques Guidelines for Shipbuilding and Ship Repair Operations (Shipbuilding CTG)

EPA Document Number: 61 FR-44050 8/27/96

CTG: Control Techniques Guidelines for Fiberglass Boat Manufacturing Materials (Boat CTG)

EPA Document Number: EPA 453/R-08-004

Conclusion:

DES submits a negative declaration for these CTGs because there are no identified stationary sources in the Shipbuilding and Boat source categories operating within HA 212.

Discussion:

EPA issued the Shipbuilding CTG in 1996 through a *Federal Register* notice. This source category includes surface coating of pleasure craft, recreational boats, and yachts. EPA followed this CTG with a guideline specifically for boat manufacturing that applies to use of gel coats, resins, and materials used to clean application equipment in fiberglass boat manufacturing (which means manufacturing hulls or decks of boats or making molds to produce hulls or decks.)

The following SCC codes are associated with this source category:

• 40202302–399 Point Source: Large Ships Surface Coating

• 31401500–599 Point Source: Boat Manufacturing

RTP located no sources in the ROP Inventory associated with these SCC codes. After conducting web searches and reviewing lists of national shipbuilders (<u>liquisearch.com</u>), RTP located one business in Clark County that advertises the making of custom boat molds, but its

principal business is pool and motorcycle/car repair (Table 10). DES concludes that its operations are not part of the CTG RACT source category, and emissions are below the 3 tpy VOC RACT applicability threshold.

Table 10. Business Potentially Engaged in Boat Manufacturing

Name	Address	City	ZIP
Kreative Industrial Fiberglass	4305 East Sahara Ave #27	Las Vegas	89104

5.1.18 Wood Furniture

CTG: Control of Volatile Organic Compound Emissions from Wood Furniture Manufacturing Operations (Wood Furniture CTG)

EPA Document Number: EPA-453/R-96-007

Conclusion:

DES submits a negative declaration for this CTG because there are no identified stationary sources in the Flat Wood Paneling source category operating within HA 212.

Discussion:

EPA finalized the Wood Furniture CTG in 1996 after negotiating the terms of the presumptive RACT recommended controls through a Federal Advisory Committee that included members from numerous stakeholder groups. The source category includes cabinet making (mass-produced and custom), household furniture (upholstered and non-upholstered), wood televisions, radios, phonographs, sewing machine cabinets, office furniture, and store fixtures that have a VOC PTE greater than 25 tpy.

The following SCC codes are associated with this source category:

• 40201901–999 Point Source: Wood Furniture – Solvent Utilization

• 2401015000 Nonpoint Source: Finished Wood – All Solvent Types

• 2401020000 Nonpoint Source: Wood Furniture – All Solvent Types

RTP located no point source emissions for the Wood Furniture CTG source category in the ROP Inventory, although RTP found businesses whose names or website description of services appeared related to woodworking. The nonpoint source emissions in the ROP Inventory includes 0.0088 tpy from the finished wood category and 0.1402 tpd from the wood furniture category.

EPA recommends applying the Wood Furniture CTG RACT only to stationary sources with a VOC PTE above 25 tpy. DES found minor source permits for only three stationary sources: Foloit Furniture Pacific, Inc., Preferred Laminations LLC, and Western Casework Corp. PTEs for all three stationary sources are below the 25 tpy presumptive VOC RACT applicability threshold. Accordingly, DES concludes that none of the businesses in the nonpoint source inventory or listed in Table 11 fall into the Wood Furniture source category.

Table 11. Businesses Potentially Engaged in Wood Furniture Surface Coating Operations

Name	Address	Description
Foliot Furniture Pacific Inc.	7000 Placid St	Institutional furniture manufacturing - furniture, institutional, manufacturing
Majestic Cabinets, LLC	4405 E Sahara Ave #5	Nonupholstered wood household furniture manufacturing - cabinets, wood household-type, freestanding, manufacturing
Old World Cabinetry LLC	3854 Silvestri Ln	Nonupholstered wood household furniture manufacturing - cabinets, wood household-type, freestanding, manufacturing
Palomares Cabinet Doors	4425 E Sahara Ave #28	wood television, radio, and sewing machine cabinet manufacturing - cabinets (i.e., housings), wood (e.g., sewing machines, stereo, television), manufacturing
Virtual Works	3130 Ponderosa Way	Upholstered household furniture manufacturing - furniture, household-type, upholstered on frames of any material, manufacturing
Dream Design Cabinets Inc	5480 S Valley View #130	
Greenline West LLC	6285 S Valley View #E	Architectural millwork
It Works Group LLC	7575 W Sunset Rd #170	
King Cabinets & Doors	4305 E Sahara #32	
Millrose Woodwork & Design	5071 Arville St	Wood product manufacturing
Pacific Custom Millwork, Inc.	7470 Dean Martin Dr #106	Millwork and cabinets
Pallet Broker LLC	6670 Gomer Rd	Pallets
Shallus Pen Company LLC	691 Lava Falls Dr	Wood pens
Som Wood Designs LLC	245 Toasted Almond Ave	
Urban Wood & Steelworx	6185 Harrison Dr #10	Custom
Wood Cab Factory LLC	6283 S Valley View Blvd #J	Wood cabinets
A & F Fine Wood Custom Cabinets	4504 W Diablo Dr #F-107	
A&A Custom Cabinets	4425 E Sahara Ave #35	
A. Sybz Cabinetry and Furniture LLC	4755 W Nevso Dr #14	
Angelo Cabinets Manufacturing LLC	6245 Harrison Dr #21	
Artistic Woodcrafters LLC	4545 W Reno Ave #B-7	
C&M Cabinet Pros	4305 E Sahara Ave #21	
Casey's Custom Woodworks LLC	4640 Arville St #C	
Cimmaron Drawer	4628 Industry Center Dr	Wood cabinets
CNC Associates NY LLC	3475 N Las Vegas Blvd	Cabinets
Flex Cabinetry	4019 Renate Dr	
Haddix Wood Interiors	4640 Arville St #C	
Haus of Reed, Inc.	3655 E Patrick Ln #800	Wood, metal
K & S Cabinets	3601 Highland Dr #4	
Las Vegas Cabinet Center	3871 S Valley View Blvd #5–7	

Name	Address	Description
Roble Woodworks LLC	4915 Steptoe St Ste #500	
RT Cabinets LLC	1951 Beesley Dr	
Somers Furniture LLC	3955 W Sunset Rd #101	
Sunny's Cabinets	3775 W Teco Ave #1	
Thorp Cabinetry & Millwork LLC	4230 W Teco Ave	
Vegas Pallet Co.	6175 N Hollywood Blvd	
Affirming Kitchen Clarity, Inc.	3845 Mapleview Ct	
All About You Custom Cabinet Company	4280 W Windmill Ln #102	
All American Design Center	3675 Highland Dr #10-12	
Artesia Kitchen & Bath	2972 S Rainbow Blvd #B	
Cabinets & Related Products, Inc.	1421 E Sunset Rd #2	
Creative Closets & Cabinetry LLC	4145 W Dewey Dr	
Custom Closet Systems, Inc.	5686 La Costa Canyon #100	
Cutting Edge Cabinets, Inc.	4910 E Cartier Ave	
EZ Roll-Out Drawers Ltd.	3775 W Teco Ave #8	
Generations Millwork LLC	5335 Wynn Rd	
GLM Cabinets	7930 W Warm Springs #170	
Grand China Materials Wholesaler, Inc.	4500 Wynn Rd #A	
Heather Allen Design Group	5275 S Arville #372	
Kitchen Connection LLC	6448 Windy Rd	
Kitchenland, Inc.	6455 Dean Martin Dr #K	
Lanz Cabinet Shop, Inc.	3025 W 7th PI	
LV Cabinets World LLC	4350 Arville #300	
Nevada Custom Cabinets, Inc.	2712 Abels Ln	
Pacific Showcase	4555 Procyon St	
Preferred Laminations LLC	4701 Cameron St #F	
R & M Custom Woodworking	2960 Westwood Dr #19	
Sendero Cabinets & Lamination LLC	2520 E Sunset Rd #4	
Stellar Woodwerks LLC	2565 Chandler Ave #11 & 12	
Superior Custom Cabinets LLC	3600 S Highland Dr #18	
Two Magic Cabinets LLC	5115 Dean Martin Dr #506	
Unique Woodworking	4755 W Nevso Dr #9	
Monte Cabinets & Countertops	2257 Gowan #100	Cabinets
4 U Cabinet Makers LLC	3070 Sirius Ave #106	

Absolute Closets and Cabinetry	6754 Spencer St	Wood kitchen cabinet and countertop
		manufacturing - cabinets, kitchen (except freestanding), stock or custom wood, manufacturing
Castle Cabinets, Inc.	3806 Civic Center Dr	
Creative Cabinetry LLC	2901 Highland Dr #9A	Custom cabinet and refinishing
JG Fine Custom Cabinetry LLC	4550 Donovan Way #124	
JJ Cabinets Millwork & Design	2901 Highland Dr #12B	Custom cabinets
Jacob's Cabinet Shop	2107 Western Ave	
JZL Designs, Inc.	2450 Losee Rd #G	Custom cabinets
JZL Designs, Inc.	2446 Losee Rd #8-11	Custom cabinets
Kitchen Podular LLC	5845 S Valley View Blvd	Modular kitchens
Knight Builders, LLC	4865 Statz St	
Las Vegas Cabinet	2901 Highland Dr #2E	Cabinet maker
Lioher Enterprise Corp	4060 Frehner Rd #100	Furniture
Mastercraft Woodworks	1733 Stocker St	Furniture
Progressive Cabinet Corp	553 W Sunset Rd	Miscellaneous - cabinet manufacturing/lamination of gaming cabinets
Rt Cabinets LLC	1711 Stocker St	
Siena Cabinets, Inc.	1222 Wigwam Pkwy	Manufacturer of cabinets
Western Casework Corporation	4832 Berg St	Commercial cabinets and millwork
Blue J Upholstery	520 W Sunset Rd #9	Auto, marine, and furniture upholstery
Safari Custom Upholstery	660 Middlegate Rd	Upholstery - cars & boats, furniture, re-covering
GREEN VALLEY UPHOLSTERY	520 W Sunset Rd #2	
Nostalgia Hot Rods LLC	1180 Wigwam Pkwy #100	Vehicle upholstery - vehicle upholstery & car restoration
Pete's Auto Upholstery LLC	1251 American Pacific #112	Automotive upholstery repair
Ajovi Upholstery	3867 S Valley View Blvd #30	Upholstery
Amore Drapery & Upholstery	2470 Chandler Ave #8	Upholstery
Browns Upholstery	3599 Polaris Ave #4	Upholstery
Cisco's Custom Upholstery Services, Inc.	4405 E Sahara Ave #3	Upholstery
Designers Decor Inc	6240 Stevenson Way	Upholstery
Encore Upholstery & Design	3650 W Reno Ave	Upholstery
International Reupholstery Corporation of America	13407 N Cave Creek Rd	Upholstery
Nevada Upholstery & Design, Inc.	3675 Highland Dr #15	Upholstery
R T Drapery & Furniture, Inc	6012 Topaz St #3	Upholstery
Santa Barbara Upholstery/ Supply	3319 E Charleston Blvd	Upholstery
Upholstery Works	4080 W Desert Inn Rd W-116	Upholstery

Name	Address	Description
Vinyl Smith	3867 S Valley View Blvd #30	Upholstery
Wizard's Custom Interiors	4275 E Sahara Ave #26	Upholstery

5.2 SOLVENT USERS

5.2.1 Degreasing Operations – Solvent Metal Cleaning

CTG: Control of Volatile Organic Emissions from Solvent Metal Cleaning (Degreasing CTG)

EPA Document Number: EPA-450/2-77-022

Conclusion:

DES will promulgate a CTG RACT rule for the Degreasing source category because there are stationary sources with degreasing operations within HA 212.

Discussion:

In 1977, EPA issued the Solvent Metal Cleaning CTG, which recommends control of VOC emissions from cold cleaners, open top vapor degreasers, and conveyorized degreasers that use volatile solvents to clean metal parts. The presumptive RACT exempts conveyorized degreasers smaller than 2.0 m² of air/vapor interface and open top degreasers smaller than 1 m² of open area.

The following SCC codes are associated with this source category:

401400222	Point Source: Solvent – Degreasing
• 40100336	Point Source: Solvent – Degreasing – Cold Cleaning
• 40100308	Point Source: Solvent – Utilization – Degreaser – Cold Cleaner
• 40100399	Point Source: Solvent – Degreasing – Cold Cleaning
• 40100308	Point Source: Solvent – Degreasing – Cold Cleaning
• 2415000000	Nonpoint Source: Solvent – Degreasing – All Solvent Types

RTP located one point source in the ROP Inventory associated with SCC 40100336: Nellis AFB, emitting 0.0002 tpd VOC.

The ROP Inventory includes 0.6256 tpd VOC emissions for the nonpoint sources.

Table 12. Metal Solvent Degreasing VOC Emissions in ROP Inventory

scc	Description	2017 Summer Weekday Emissions	2026 Summer Weekday (tpd)
		(tpd)	

40100336	Degreaser	0.0002	0.0003
2415000000	Degreasing: All Processes/All Industries	0.63	0.6253
	Total	0.6302	0.6256

5.2.2 Other Potential Degreasing Operators

RTP located 177 companies involved with metal working – including fabrication, machining, coin making, tower construction, fence making, and miscellaneous other activities. Table 13 lists these companies. These businesses could operate degreasers as part of their operations and emissions from these degreasers may already be included in the nonpoint source ROP Inventory. Because of the number of potential stationary sources, DES will adopt a CTG RACT for this source category.

Table 13. Metal Fabrication Businesses Potentially Engaged in Operating Degreasers

Name	Address	City	ZIP
A & N Custom Fabrication Inc	3130 Ponderosa Way	Las Vegas	89118
AA-1 Plating	242 Sunpac Ave	Henderson	89011
Aardwolf Welding	8276 Tone St	Las Vegas	89123
Absolute Metals LLC	4145 Sobb Ave	Las Vegas	89118
Additec	4185 W Post Rd #A-B	Las Vegas	89118
Additive Manufacturing	5311 Severance Lane	Las Vegas	89131
Advanced Additive 3D LLC	675 Grier Dr	Las Vegas	89119
After Dark Kreations LLC	3855 S Valley View Blvd #34	Las Vegas	89103
AG & Associates Inc.	2954 Westwood Dr #D	Las Vegas	89109
Aksarben Metals, Inc.	4525 Delancey Dr	Las Vegas	89103
All American Finishing	6575 Harrison Dr #7	Las Vegas	89120
All American Finishing LLC	3070 Sirius Ave #108		89102
AMC Fabrication, Inc.	6165 Annie Oakley Dr #B	Las Vegas	89120
American Machine Corporation	1800 Industrial Rd #140		89102
American Metal Customs	2450 Losee Rd	NLV	89030
AMW Precision LLC	4120 W Windmill Ln #101	Las Vegas	89139
AR Iron	1425 Athol Ave	Henderson	89011
AR Power Coating and Media Blasting	1401 Athol Ave	Henderson	89011
Armtech, Inc.	4023 W Oquendo Rd	Las Vegas	89118
Artisan Iron Works	2121 Western Ave #6		89102
Artistic Wood and Iron Works LLC	774 Wallington Estate St	Las Vegas	89178
Arts and Metal Iron Works LLC	1713 Stocker St	NLV	89030
ASAP Fabrication	4720 Grand Canyon	Las Vegas	89129
ASAP Fabrication LLC	2056 Highland Ave	Las Vegas	89102
Bad Dogz Fab	6221 Valley Grove Ct	Las Vegas	89130
Bandilla Iron Works	2642 Westwood Dr		89109
Belzona	2415 Greens Ave	Henderson	89014
Beyond Fabrication LLC	4660 Berg St #100	NLV	89031
Brenelle Enterprises, Inc.	5429 S Decatur Blvd	Las Vegas	89118
CMC Economy Steel	4485 E Colton Ave	Las Vegas	89115

Name	Address	City	ZIP
C&D Mobile Welding Service		NLV	89110
Centerline Fabrication LLC	3520 W Oquendo Rd	Las Vegas	89118
CKI Locker LLC	4170 Distribution Cir #103	NLV	89030
Cole Kepro International LLC	4170 Distribution Cir #4170	NLV	89030
Cubicall LLC	580 W Cheyenne Ave #100	NLV	89030
Cueto Welding LLC	1555 Bledsoe Ln	Las Vegas	89110
Custom Power Coating	3300 Pollux Ave	Las Vegas	89102
Custom Power Coating	6276 S Sandhill Rd	Las Vegas	89120
D.R. Mobile Welding Service	2590 N Nellis Blvd	Las Vegas	89156
Desert Sheetmetal Fabrication LLC	3475 Polaris Ave	Las Vegas	89102
DH Iron	2123 Western Ave #4	NLV	89102
Artistic Welding Iron	4300 N Pecos Rd #6	NLV	89115
Artistic Welding Iron LLC	4300 N Pecos Rd #6	NLV	89115
Elemetal Direct USA LLC	6280 S Valley View #630	Las Vegas	89118
Eteros Technologies USA, Inc.	6175 S Sandhill Rd #600	Las Vegas	89120
Fabricated LV LLC	6351 Hinson St #M	Las Vegas	89118
Fabrication Technologies, Inc.	7445 Dean Martin Dr #115-116	Las Vegas	89139
Fan Equipment Co., Inc.	2630 E La Madre Way	NLV	89081
Fiber-Tech Lifting Products	8740 S Jones Blvd	Las Vegas	89139
First Class Finishing	5686 La Costa Canyon	Las Vegas	89139
General Fabrication LLC	5225 S Valley View Blvd #6	Las Vegas	89118
Gilbert's Precision Machine	2685 Industrial Rd	Las Vegas	89109
GreenBroz, Inc.	6255 N Hollywood Blvd #115	NLV	89115
Ground Control Systems, Inc.	4650 Polaris Ave #A	Las Vegas	89103
H&H Enterprises	6340 Sunset Corporate Dr	Las Vegas	89120
H&H Enterprises	1965 E Russell Rd	Las Vegas	89119
Heads By Rick, Inc.	6959 Speedway Blvd #W108	Las Vegas	89115
Heavy Metal	1517 Industrial Rd	NLV	89102
Hershberger Bros Welding, Inc.	6625 W Gary Ave	Las Vegas	89139
Holdrite	4601 E Cheyenne Ave #101	Las Vegas	89115
Hybrid International LLC	235 W Brooks Ave	NLV	89030
Imperial Mobile Welding Services		NLV	89107
Industrial Metalcraft, Inc.	4715 W Harmon Ave	Las Vegas	89103
InteRebar Fabricators LLC	3101 E Craig Rd	NLV	89030
Intrepid Metal Works, Inc.	3321 Western Ave	Las Vegas	89109
Jackelope Machine LLC	3065 N Rancho Dr #164	NLV	89108
JC Custom Fabrication	6867 Speedway Blvd #R-104	Las Vegas	89115
JC Welding Service		NLV	89169
JNS Metals	3065 N Rancho Dr #176	NLV	89108
JR Metal Express, Inc.	4620 Mitchell St #A-B-C-D	NLV	89031
KC Ironworks LLC	3110 Polaris Ave #44	NLV	89102
Kwicksilver Nevada Wheel Repair	50 N Gibson Rd #150	Henderson	89014
L&J Fabrication LLC	3355 Clayton St #11	NLV	89032
Lanz Industrial Welding, Inc.	9310 NE 222nd Ave	Vancouver	98682
Las Vegas Fabrication Services	2900 E Patrick Ln #5A	Las Vegas	89120
Las Vegas Institute of Welding	4010 W Hacienda Ave #100	Las Vegas	89118
Las Vegas Machining Services	3073 S Highland Dr	Las Vegas	89109

Name	Address	City	ZIP
Lasher Sport LLC	5720 Arville St #105	Las Vegas	89118
Lefty's Metal Works LLC		NLV	89143
Line-X	7585 Commercial Way	Henderson	89011
LV Sheet Metal	4425 E Sahara Ave #10	Las Vegas	89104
LVL Custom Upholstery LLC	6295 Harrison Dr	Las Vegas	89120
Machining Specialist, Inc.	2542 Abels Ln	Las Vegas	89115
Magnus Ornamental Metals LLC	3850 Ponderosa Wy	Las Vegas	89118
Mario's Metal Shop, Inc.	3111 S Valley View #E-123	Las Vegas	89102
Matrix Metalworks LV LLC	6500 W Richmar Ave #400	Las Vegas	89139
Mel's Metal Works	5385 Cameron St #23	Las Vegas	89118
Metal Air Products, Inc.	3110 Westwood Dr	Las Vegas	89109
Metalwest - Henderson	451 Mirror Ct #104	Henderson	
Metro Awnings & Iron, Inc.	4525 W Hacienda Ave #2	Las Vegas	89118
Micar Fabrication & Design Co.	5166 Arville St	Las Vegas	89118
MKF LLC	6909 Fox Sparrow Ct	NLV	89084
My Iron Works LLC	4320 W Reno Ave #A	Las Vegas	89118
National Guard Products, Inc.	4584 Calimesa St	Las Vegas	89115
Nevada Metal Finishing Specialists Corporation	6658 Boulder Hwy #5	Las Vegas	89122
Nevada Precision Sheet Metal	3135 Venture Dr	Las Vegas	89101
Nevada Precision Sheet Metal	714 S 1st St	Las Vegas	89101
Nevada Precision Sheet Metal	3546 Procyon St	Las Vegas	89103
Nevada Sheet Metal Fabrication Services LLC	2806 Highland Dr	NLV	89109
Nevada Thermal Spray Technologies LLC	4842 Judson #115	Las Vegas	89115
Norsso LLC	6603 Schuster St	Las Vegas	89118
North Mobile Welding Reparations	3316 E Lake Mead Blvd	NLV	89030
Nova Tool Co.	3852 E Post Rd	Las Vegas	89120
Nucor Insulated Panel Group LLC	4700 Engineers Way #103	NLV	89081
Ohana Sheet Metal Fabrication	3050 Westwood Dr #A8	Las Vegas	89109
Omega Precision Machining	5460 Cameron St #101	Las Vegas	89118
P & L Fencing & Iron LLC	2842 Marco St	Las Vegas	89115
P & S Metal & Supply Company	5180 Rogers St	Las Vegas	89118
PDM Steel	4475 Alto Ave	Las Vegas	89115
Perfect Finish Coatings	6867 Speedway Blvd	Las Vegas	89115
Perfect Iron Works	3000 Builders Ave #C		89101
Phantom Refining	4020 W Ali Baba Lane #D	Las Vegas	89118
Plastic Media Stripping	4275 W Bell Dr #2	Las Vegas	89118
PM Steel		NLV	
Powder Coating Plus	5325 S Valley View #107	Las Vegas	
Power Coating Plus	3508 W Post Rd	Las Vegas	89118
Power Gen Components LLC	4311 W Oquendo Rd	Las Vegas	89118
Praxair Distribution Inc	4260 W Tompkins Ave #B	Las Vegas	89103
Precision Tube Laser LLC	6180 S Pearl St #F	Las Vegas	89120
Precision Works	2410 Western Ave	NLV	89102
Ram Pro Line LLC	4685 Copper Sage St #B	Las Vegas	89115
Ramsey & Son, Inc.	3292 E Sunset Rd #125 & 130	Las Vegas	89120

Name	Address	City	ZIP
Rebar Machine Service, Inc	5935 Emerald Ave	Las Vegas	89122
RioSteel LLC	6180 N Hollywood Blvd #107	Las Vegas	89115
Rolladen Rolling Shutters, Inc.	4405 Wagon Trail Ave	Las Vegas	89118
Roy Kueppers World of Magic	3867 S Valley View Blvd #27	Las Vegas	89103
Royal Wire Products, Inc.	4213 W Patrick Ln	Las Vegas	89118
RPM Fabrication	4985 Lincoln Rd	NLV	89115
SRI Instruments, Inc.	6440 Sunset Corporate Dr	Las Vegas	89120
SendIt CNC, Inc.	3945 W Reno Ave #D	Las Vegas	89118
Sewer Cable Equipment Company	2834 Marco St	Las Vegas	89115
Shamrock Metals LLC	1120 Palms Airport Dr	Las Vegas	89119
Shine Shop	676 Middlegate Rd	Henderson	89011
Sick Fab LLC	6160 N Hollywood Blvd. #104	Las Vegas	89115
Sierra Metals Southwest LLC	3555 W Oquendo Rd #C	Las Vegas	89118
Silver State Wire Rope and Rigging	8740 S Jones Blvd	Las Vegas	89139
Sin City Metal Works	4522 N Lamb Blvd	Las Vegas	89115
Slater Design Studios	1624 S Mojave Rd #140	Las Vegas	89104
SMS Industries LLC	6340 S Sandhill Rd #3	Las Vegas	89120
Southern Nevada Metal Fabricators	1235 N Nellis Blvd #15	NLV	89110
Southern Nevada Welding, Inc.	4115 Arctic Spring Ave	Las Vegas	89115
Spot On Fabrication	6151 McLeod Dr #E	Las Vegas	89120
SprayBuilt, Inc.	170 S Rainbow Rd	Las Vegas	89145
SRS Fabrication, Inc.	3031 Coleman St	NLV	89032
SRS Fabrication, Inc.	4560 Donovan Way	NLV	89031
Stainless Steel Fabrication, Inc.	2828 Highland Dr		89109
Steel Concepts LLC	9 E Brooks Ave	NLV	89030
Stephen McNair & Sylvia McNair	2235 Crestline Loop	NLV	89030
Sternschnuppe	3325 W Sunset Rd #E	Las Vegas	89118
Super Brands	151 Gallagher Crest Rd	Henderson	89074
Superior Duct Fabrication, Inc.	4050 W Mesa Vista Ave	Las Vegas	89118
Cutting Edge of Diamond Blades, Inc.	6285 Hinson St	Las Vegas	89118
The Tranzition	5470 Cameron St #108	Las Vegas	89118
Tiarra Iron Works	3580 Polaris Ave #7	Las Vegas	89103
Timet	245 Fourth St	Henderson	89015
Toms Welding		NLV	89108
Tri-State Steel, Inc.	2780 Bledsoe Ln	Las Vegas	89156
Trulite Glass & Aluminum	1513 A St		89106
UNI Metalworks	4425 E Sahara Ave #40	Las Vegas	89104
Union Erectors LLC	6625 W Gary Ave	Las Vegas	89139
Vegas Fastener Manufacturing	4315 W Oquendo Rd	Las Vegas	89118
Vegas Forge	4308 E Alexander Rd	Las Vegas	89115
Vegas Metal Finishing LLC	55 W Mayflower Ave	NLV	89030
Verdin Iron Works		NLV	89145
Vinny's Metal Fabrication	2446 Losee Rd #1 & 2	NLV	89030
VSR Industries, Inc.	1941 Ramrod Ave	Henderson	89014
Vulcan Iron	2237 Gowan Rd #170	NLV	89032
Welder UP LLC	3160 S Highland Dr #D	Las Vegas	89109
Wheel Repair Las Vegas Pros	676 Middlegate Rd	Henderson	89011

Name	Address	City	ZIP
Wizkits	5041 N Rainbow Blvd	NLV	89130
Wonder Iron Works	2616 Westwood Dr		89109
Young Engineering & Manufacturing, Inc.	4010 W Ali Baba Ln #G	Las Vegas	89118
Liborio's Sheetmetal Services, Inc.	2450 Losee Rd #F	NLV	89030
Metal Time, Inc.	595 E Brooks Ave #303	NLV	89030
Ray Iron Ornamental LLC	1735 Stocker St	NLV	89030

5.2.3 Potential Degreasing CTG RACT VOC Emissions Reductions

Presumptive RACT for this source category is based on equipment specifications and operating requirements rather than a specific emissions limitation. EPA recommends two options (equipment/operation specifications or work practices) for meeting RACT requirements for each type of degreaser system: cold cleansers, open top degreasers, and conveyorized degreasers.

Section 60.2 of the AQRs establishes requirements for degreasing operations; however, the Clark County Board of Commissioners withdrew this regulation in 2011 and DES can no longer enforce it. Because DES is not enforcing the rule the ROP Inventory is based on uncontrolled emissions.

For purposes of estimating emissions reductions, RTP included no additional emissions reductions from Nellis AFB because the facility is already subject to a RACT level of emissions control. For the remaining nonpoint source emissions, RTP estimated emissions reductions based on projected control efficiency.

Table 14 shows EPA's estimated control efficiency by percent of emissions reduction based on equipment type and control option. In the Degreasing CTG, EPA estimated that cold cleaners represent 60% of the equipment population, open top vapor degreasers represent 25%, and conveyorized degreasers represent 15%. However, information published by the Ozone Transport Commission suggests the population of cold cleaners is 92% (OTC 2016). DES staff confirmed they are unaware of any type of degreaser operating within HA 212 other than cold cleaners.

Table 14. Projected VOC Emissions Reductions (tpd) from Metal Solvent Degreasing CTG RACT

	Percentage of Degreaser Population	Option A	Option B	2026 Projected Emission Reductions (tpd)
Cold Cleaning	100%	50 <u>+</u> 20%	53 <u>+</u> 20%	0.33
Open Top Vapor Degreaser	0%	45 <u>+</u> 15%	60 <u>+</u> 15%	
Conveyorized Degreasers	0%	25 <u>+</u> 5%	60 <u>+</u> 10%	
Total Emissions Reduction				0.33

Note: All percentage reduction estimates based on values EPA reported in the Solvent Metal Cleaning CTG.

To compute the potential for emissions reduction that could result from adopting CTG RACT for solvent metal cleaning degreasers, DES assumed that all degreasers operating in HA 212 are cold cleaners. This assumption produced a more conservative emissions reduction estimate because estimated control efficiency for other types of degreasers are higher. If any open top or conveyorized degreasers operate within HA 212, the emissions reductions achievable with the CTG RACT would be higher.

Assuming a 100% population of cold cleaners, RTP multiplied the average control efficiency (53%) of Option B by the total degreasing emissions in the emissions inventory. This control efficiency assumption result also is conservative because DES's RACT will impose both Control Option A and Control Option B requirements, which should produce greater emissions reductions than would be achievable through application of only Control Option B.

Using this approach, RTP estimates that adoption of the Degreaser CTG RACT could reduce emissions by 0.33 tpd VOC (Table 14). DES made no adjustment for rule effectiveness because it used a highly conservative estimation approach, and the control efficiency estimates provided by EPA already included a wide efficiency range; adding another safety factor for rule effectiveness could produce highly skewed results.

5.2.4 Dry Cleaners

CTG: Control of Volatile Organic Emissions from Large Petroleum Dry Cleaners

EPA Document Number: EPA-450/3-82-009

Conclusion:

DES submits a negative declaration for this CTG because there are no confirmed stationary sources for the Large Petroleum Dry Cleaners source category within HA 212.

Discussion:

EPA issued a CTG in 2008 that applies to large dry cleaners using petroleum dry cleaning solvents. EPA does not define "large" in the CTG, but developed model plants for facilities with VOC emissions from 40 to greater than 140 tpy.

The following SCC codes are associated with this source category:

40100102 Point Source: Dry Cleaning
 40100104 Point Source: Dry Cleaning
 40100147 Point Source: Dry Cleaning

There are no nonpoint source emissions for this CTG source category because the source would need to emit at point source thresholds to qualify as a CTG source.

RTP identified no point sources in the ROP Inventory reporting emissions under these SCC. Through its business license search, RTP identified businesses registered as dry cleaners. The majority, however, are intake points for laundry processed elsewhere. None of the facilities hold Clark County air permits which means that all the facilities emissions are below the model plant levels EPA used for the CTG. Thus, none of the identified dry cleaners would qualify as a "large" dry cleaners.

5.2.5 Industrial Adhesives

CTG: Control Techniques Guidelines for Miscellaneous Industrial Adhesives (Industrial Adhesives CTG)

EPA Document Number: EPA 453/R-08-005

CTG: Control Techniques Guidelines for Miscellaneous Industrial Adhesives (Industrial Adhesives CTG)

EPA Document Number: EPA 453/R-08-005

Conclusion: DES will promulgate a CTG RACT rule for the Industrial Adhesive source category because there is at least one stationary source operating within HA 212.

EPA issued the Industrial Adhesives CTG in 2008. It applies to a range of adhesive applications that emit more than 3 tpy of VOC. Adhesives are generally defined as compounds that allow two surfaces to join, and the CTG recommends controls for a variety of adhesive and adhesive primer applications. It does not apply to processes addressed in other CTGs, such as aerospace coatings; metal furniture coatings; large appliance coatings; flat wood paneling coatings; paper, film, and foil coatings; offset lithographic printing and letterpress printing; flexible package printing; coil coating; fabric coating; and rubber tire manufacturing. The CTG includes recommendations for motor vehicle adhesives, glass bonding primers, and weatherstripping adhesives that are not applied at automobile and light duty truck manufacturers.

The following SCC codes are associated with this source category:

• 40200701 Point Source: Adhesive Application – Surface Coating

• 40200706 Point Source: Adhesive Mixing

• 40200707 Point Source: Adhesive Storage

40200710 Point Source: Adhesive General

• 40200711 Point Source: Adhesive Spray

• 40200712 Point Source: Adhesive Roll-on

• 30105101 Point Source: Animal Adhesives

• 30105001 Point Source: General/Compound Unknown

• 2460600000 Nonpoint Source: Adhesives and Sealants (consumer and commercial)

Table 15 shows emissions for one point source and nonpoint sources.

Table 15. Industrial Adhesives VOC Emissions in ROP Inventory

scc	Facility	2017 Summer Weekday Emissions (tpd)	2026 Summer Weekday (tpd)
40200701	Erickson International	0.0054	0.0054*
2460600000		5.7803	6.6003

Erickson International's actuals emissions are well below 3 tpy VOC recommended for presumptive RACT applicability and would not subject the stationary source to the Industrial Adhesives CTG if adopted.

5.2.6 Other Potential Industrial Adhesive Operators

Unlike other CTG source categories, which fall into a defined source category that can be identified through business licenses, industrial adhesives may be used by a variety of source categories. RTP identified two stationary sources whose business descriptions suggested the potential for industrial adhesive use. Neither stationary source is permitted through DES's minor NSR permit program. Thus, DES determined that emissions for these sources are below the RACT applicability threshold.

A review of minor NSR permits found that Universal Urethane, Inc. is a user of industrial adhesives, but its minor NSR permit (Source ID 859, last issued May 19, 2022) limits adhesive use to less than 2,000 lb/12-month rolling total. This falls outside the Industrial Adhesives CTG source category because emissions are less than 3 tpy of VOC. Review of a Part 70 operating permit for Certain Teed determined this manufacturer did not fall within the source category.

RTP identified Artesian Spas as an additional user of industrial adhesives; it has a PTE for primers, cements, and adhesives of 27.19 tpy of VOC, so falls within this CTG source category.

Table 16. Businesses Potentially Engaged in Industrial Adhesive Operations

Name	Address	Description	URL
Wausau Coated Products, Inc.	4030 Industrial Center Dr #501	Adhesive labels	Wasau Labels
Specialty Adhesive Film Co.	1914 Mendenhall Dr	Heat seal adhesive	Specialty Adhesive Film
Universal Urethane, Inc.	_	_	_
Artesian Spas	_	_	_

5.2.7 Projected Industrial Adhesives CTG RACT Emissions Reductions

EPA's presumptive RACT approach is based on two options for achieving emission controls: (1) use of low-VOC adhesives with good adhesive transfer application methods, and (2) a combination of low-VOC adhesives and add-on controls. Alternatively, EPA allows for an 85% control efficiency standard.

While the SCC code 2460600000 (nonpoint source) is assigned to consumer and commercial products rather than industrial products, EPA's 2017 National Emissions Inventory (NEI) technical support document indicates that estimated emissions could include point source emissions from SCC 40200710 (industrial adhesives) (EPA 2021b). Since RTP identified at least one point source with a VOC PTE above 27 tpy (0.074 tpd) whose emissions are not otherwise represented in the ROP Inventory, RTP'assumed 20% of SCC 2460600000's nonpoint emissions (1.3201 tpd) represent emissions from point sources potentially subject to the CTG. Table 17 shows RTP'semissions reduction estimates from point and nonpoint sources.

Table 17. Projected VOC Emissions Reductions from Industrial Adhesives CTG RACT

2026 Controllable Industrial Adhesive Emissions (tpd)*	Control Efficiency	Rule Effectiveness	2026 Projected Emissions Reductions (tpd)
1.32	85%	80%	0.90

Based on 20% of nonpoint source emissions.

5.2.8 Industrial Cleaning Solvents

CTG: Industrial Cleaning Solvents

EPA Document Number: EPA-453/R-06-001

Conclusion:

DES will promulgate a CTG RACT rule for the Industrial Solvent Cleaning source category because there likely is at least one stationary source operating within HA 212.

Discussion:

EPA issued the Industrial Cleaning Solvents CTG in 2006. The following SCC codes are associated with industrial solvent use:

•	40200201	Point Source: Water – Base Solvent – Utilization – General
•	40200301	Point Source: Varnish/Shellac Solvent – Utilization – General
•	40200401	Point Source: Lacquer Solvent – Utilization – General
•	40200501	Point Source: Enamel Solvent – Utilization – General
•	40200601	Point Source: Primer Solvent – Utilization – General
•	40200801	Point Source: General Solvent – Utilization – Surface Coating
•	40200901	Point Source: Solvent – Utilization – Thinning Solvents
•	40200926	Point Source: Solvent – Utilization – Thinning Solvents
•	40299998	Point Source: Solvent – Utilization – Misc.
•	40100308	Point Source: Methyl Ethyl Ketone

40200901 Point Source: Thinning Solvent
 40200926 Point Source: Thinning Solvent

• 2401200000 Nonpoint Source: Other Special Purpose Coatings

Clark County's ROP Inventory includes no point source emissions. This finding is consistent with EPA's estimate in the 2006 Industrial Solvent Clean CTG which reported no sources in the state of Nevada. The ROP Inventory includes (0.7914) tpd of VOC emissions associated with "other special purposes coatings" which RTP assumes is related to this source category. In reviewing the ROP Inventory, there are at least two SCC, identified in the following table, that include emissions from the use of cleaning solvents. The coatings and related products category SCC 246050000 includes emissions formerly reported under SCC 246020000 (other industrial solvent utilization) in the 2016v2 modeling platform. To estimate the portion of emissions in the coatings and related products category in the ROP Inventory that relate to industrial cleaning solvent emissions, RTP used the 2026 projected value in 2026v2 modeling platform for 2026 from SCC 246020000 to represent the industrial portion of emissions in the ROP Inventory. (See file: 2026j proj VCPy solvents 2016fj 10jul2021.v0.csv.FIP32 in EPA's modeling platform).

SCCDescription2026 Summer Weekday (tpd)2460500000C&C: Coatings and Related Products (industrial component only based on 2016v2 estimate)3.97842401200000Other Special Purpose Coatings0.7914TOTAL4.7698

Table 18. Industrial Solvent Cleaning Emissions in 2026 ROP Inventory

5.2.9 Other Potential Industrial Cleaning Solvent Operators

The Industrial Cleaning Solvents CTG regulates consumer and commercial products that are used to remove such compounds as dirt, adhesives, inks, coatings, and other unwanted materials. Industrial operations across all types of source categories may use these products, and RTP did not compile a separate list of stationary sources potentially subject to this CTG RACT.

5.2.10 Potential Industrial Cleaning Solvents CTG RACT VOC Emissions Reductions

EPA's presumptive RACT requirements include work practice requirements, a proposed emissions limitation, and an alternative emissions standard that apply to facilities exceeding a 15 lb/day VOC emissions threshold. Table 19 displays these requirements.

 Table 19. Industrial Clean Solvent Presumptive CTG RACT Requirements

Operation	Presumptive RACT		
Work Practices	Cover open contains, minimize air circulation and cleaning operations, properly dispose of used solvent, minimize emissions		
VOC Content Limit	0.42 lb VOC/gal or achievement of 85% emissions control		
Alternative	Vapor pressure equal to or less than 8 mm Hg		

In the supporting documentation for the Industrial Solvent Cleaning CTG, EPA estimated that 71,000 tpy of VOC were emitted from nonattainment area CTG sources. It also estimated that implementing the lb/gal VOC content limit and work practice requirements would reduce emissions by 67,000 tpy of VOC, which computes to a 94% emissions reduction. To calculate potential emission reductions from implementing the CTG RACT in Clark County, RTP estimated emissions reductions using the national average and an 80% rule effectiveness (Table 20).

Table 20. Projected VOC Emissions Reduction from Industrial Cleaning Solvent CTG RACT

Controllab Emissions		Control Efficiency	Rule Effectiveness	Projected Emissions Reductions (tpd)
4.77	,	94%	80%	3.74

5.2.11 Graphic Arts

CTG: Control of Volatile Organic Emissions from Existing Stationary Sources – Volume VIII: Graphic Arts – Rotogravure and Flexography

EPA Document Number: EPA-450/2-78-033

CTG: Control Techniques Guidelines for Flexible Packaging Printing

EPA Document Number: EPA-453/R-06-003, 2006/09

CTG: Offset Lithographic Printing and Letterpress Printing

EPA Document Number: EPA-453/R-06-002, 2006/09

Conclusion:

DES will promulgate a Graphic Arts CTG RACT rule covering offset lithographic, letterpress and flexible package printing because at least one stationary source may be operating in HA 212. DES submits a negative declaration for the 1978 Rotogravure and Flexographic Source CTG source category because there are no identified stationary sources in the source category operating within HA 212.

Discussion:

Graphic arts operations in the printing and publishing industry use inks and other solvent-based materials. EPA issued three CTG documents that affect this source category. The first, issued in 1978, applies to graphic arts operations that use flexographic or rotogravure printing for publication and for packaging and emit at least 100 tpy. In 2006, EPA issued two additional CTGs that apply to flexible packaging and to offset lithographic and letterpress printing processes that emit at least 15 lb/day of VOC and have a PTE, from heatset inks and dryers (emitting inks, coatings or adhesives), greater than 25 tpy before consideration of emissions controls.

The following SCC codes are associated with this source category:

•	40500308–9	Point Source: Flexographic Dryer and other non-dryer printing – Graphic Arts
•	4050020405	Point Source: Letterpress Dryer and other non-dryer printing – Graphic Arts
•	40500402-03	Point Source: Lithographic Printing Dryer and other non-dryer printing - Graphic Arts
•	40500515–16	Point Source: Rotogravure Dryer and other non-dryer printing – Graphic Arts
•	36000102	Point Source: Flexographic: Scrap Substrate Collection – Graphic Arts
•	36000104	Point Source: Lithographic: Scrap Substrate Collection – Graphic Arts
•	36000103	Point Source: Rotogravure: Scrap Substrate Collection – Graphic Arts
•	2425000000	Nonpoint Source: Solvent – Graphic Arts

The ROP Inventory also includes point source emitters under graphic art SCC codes or other, now-retired codes (Table 21). CPP Acquisition is the largest emitter in the inventory, but RTP could not locate CPP Acquisition through Yellow Pages and web-based searches; and therefore, assumes that the company is no longer in operation.

Table 21. Graphic Arts VOC Emissions in ROP Inventory (Point Sources)

Facility Name	Facility ID	Туре	scc	2017 Summer Weekday (tpd)	2026 Summer Weekday (tpd)	Category
CPP Acquisition	15193	Dryer	40500101	0.0018	0.0018	Other
CPP Acquisition	15193	Printer	40500401	0.0561	0.0561	Lithographic
Las Vegas Color Graphics	1149	Printing press	40500411	0.0200	0.0200	Lithographic
Las Vegas Review- Journal	588	Parts washer	40500417	0.0221	0.0265	Lithographic
Nevada Color Litho	754	Printing press	40500433	0.0517	0.0517	Lithographic
West Rock	1055	Printing press	40500501	0.0298	0.0298	Gravure
Berry Plastics Corp.	597	Offset printing	40500802	0.0154	0.0185	Fugitive Cleaning Rags
TOTAL EMISSIONS				0.1969	0.2026	

Berry Plastics Corporation operates under the authority of a minor NSR permit. The emissions reported in the ROP Inventory are associated with cleaning rags, but Berry also operates offset printers with a VOC PTE of 19.62 tpy.

West Rock is the only point source reporting emissions for a rotogravure category but the emissions are well below the 100 tpy applicability threshold for the 1978 Rotogravure and Flexography CTG. Therefore, it is not part of the CTG source category.

The ROP Inventory also includes nonpoint source emissions for solvent use related to graphic arts operations under SCC 2460200000 (Table 22).

 SCC
 Description
 2017 Summer Day Emissions (t/d)
 2026 Summer Weekday Emissions (tpd)

 2425000000
 Solvent Utilization; Graphic Arts; All Solvents
 2.2024
 2.5514

Table 22. Graphic Art Operations in ROP Inventory (Nonpoint Sources)

5.2.12 Other Potential Graphic Art Operators

RTP located an additional 137 companies that engage in some type of printing activity (Table 23). In most cases, the types of printing operations for these facilities are unknown. Because these facilities are not permitted under the Part 70 Operating permit program, DES concludes that none of these facilities would be part of the 1978 CTG source category. It is also unknown whether any of these facilities have operations that exceed the 2006 CTGs' presumptive applicability thresholds.

Table 23. Businesses with Potential Graphic Art Operations

Name	Address	City	ZIP
Wall Sensations of Nevada LLC	5321 E Shaw Butte Dr		85254
7 Printing and Mailing LLC	2710 E Patrick Ln #1	Las Vegas	89120
A & B Printing & Mailing	2908 S Highland Dr #B	Las Vegas	89109
A2 Exhibits, Inc.	6215 McGill Ave #C300	Las Vegas	89122
AA Printing Service	4800 S Maryland Pkwy #C	Las Vegas	89119
AB Screen Printing	236 Shoshone Ln	Henderson	89015
Abbott's Custom Printing and Specialty	411 Mark Leany Dr	Henderson	89011
ABC Imaging of Washington	3395 W Oquendo Rd	Las Vegas	89118
Absolute Exhibits, Inc.	6620 Escondido St #E	Las Vegas	89119
Accent Print Company LLC	2475 Chandler Ave #18	Las Vegas	89120
Ace Banners	3480 E Patrick Ln Ste Suite C	Las Vegas	89120
Advance Print LV LLC	591 Kavanaugh Pl	Las Vegas	89123
Airwolf 3D	6580 Spencer St #120	Las Vegas	89119
AlphaGraphics Las Vegas	7135 Bermuda Rd	Las Vegas	89119
Altitude Color Technologies	6185 S Valley View Blvd #B	Las Vegas	89118
Anthem East, Inc.	10624 S Eastern Ave #A	Henderson	89052
ARC Document Solutions LLC	2925 E Patrick Ln #A & B	Las Vegas	89120
ARC Document Solutions, LLC	4345 Dean Martin Dr	Las Vegas	89103
Astound Group	5675 E Ann Rd	NLV	89115

Name	Address	City	ZIP
Big Mountain Imaging	4725 Copper Sage St	Las Vegas	89115
Candid Litho Printing, Ltd	4795 W Nevso Dr	Las Vegas	89103
Clark County Legal News	433 Concord Way	Henderson	89015
Color Gamut Digital Imaging LLC	1550 Executive Airport Dr #140	Henderson	89052
Color Reflections LLC	3560 S Valley View Blvd	Las Vegas	89103
Com Art Signs & Design LLC	3111 S Valley View Blvd #V-101	Las Vegas	89102
Creative Digital Printing	6415 Karms Park Ct	Las Vegas	89118
Curtis 1000 Inc./ Taylor Print Impressions	4151 N Pecos Rd #203	NLV	89115
Custom Jacks	26 Commerce Center Dr	Henderson	89014
DA Graphics LLC	3111 S Valley View Blvd #V-101	Las Vegas	89102
D'andrea Visual Communications LLC	70 W Craig Rd #100	NLV	89032
Delta 3D Printers LLC	6570 Spencer St #C-1	Las Vegas	89119
Derse, Inc.	3455 W Reno Ave #C	Las Vegas	89118
Derse, Inc.	3200 E Gowan Rd #115	NLV	89030
Desert Design and Print	693 N Valle Verde Dr #4	Henderson	89014
Design To Print, Inc.	7015 Corporate Plaza Dr #110	Las Vegas	89118
Digital Insight Printing, Inc	159 N Gibson Rd	Henderson	89074
Digital Print Solutions LLC	1929 Sunnyslope Ave	Las Vegas	89119
Display & Exhibit Builders and Warehousing, Inc.	5220 Steptoe St #2	Las Vegas	89122
EG3 Technologies LLC	980 American Pacific Dr #104	Henderson	89014
Exhibit Options	5470 E El Campo Grande Ave	NLV	89115
Express Imaging Corporation	3995 W Post Rd	Las Vegas	89118
FedEx Office & Print Services, Inc.	3708 S Las Vegas Blvd	Las Vegas	89109
FedEx Office And Print Services, Inc.	3950 S Las Vegas Blvd	Las Vegas	89119
FedEx Office and Print Services, Inc.	2288 S Nellis Blvd	Las Vegas	89142
FedEx Office and Print Services, Inc.	5775 S Eastern Ave #106	Las Vegas	89119
FedEx Office and Print Services, Inc.	395 Hughes Center Dr	Las Vegas	89169
FedEx Office and Print Services, Inc.	7620 S Las Vegas Blvd #100	Las Vegas	89123
FedEx Office and Print Services, Inc.	3150 Paradise Rd	Las Vegas	89109
Fedex Office and Print Services, Inc.	9516 W Flamingo Rd	Las Vegas	89147
Flint Group Packaging Inks North America Corporation	6405 E Centennial Pkwy	NLV	89115
Franklin Printing	6765 S Eastern Ave Ste #6	Las Vegas	89119

Name	Address	City	ZIP
Gable Signs & Graphics, Inc.	7440 Fort Smallwood Rd	Baltimore	21226
Gill's Printing & Color Graphics	6800 Paradise Rd	Las Vegas	89119
Gold Star Signs LLC	4386 E Alexander Rd Bldg 16	Las Vegas	89115
Graphicsmart LLC	1889 E Maule Ave #I	Las Vegas	89119
Green Valley Graphix & Window Tinting	600 W Sunset Rd #106	Henderson	89011
Greenspun Media Group LLC	2275 Corporate Cir #300	Henderson	89074
Haigs Quality Printing Nevada	6360 Sunset Corporate Dr	Las Vegas	89120
HikePrint LLC	4310 Cameron St #15	Las Vegas	89103
HTA Photomask	2580 E Sunset Rd	Las Vegas	89120
Impress By Print LLC	6555 S Tenaya Way #900	Las Vegas	89113
In Business Las Vegas LLC			
Ink Drops Printing & Design	4640 Arville St #G	Las Vegas	89103
Intershine Graphics Inc	5075 Cameron St #E	Las Vegas	89118
Custom Jacks	26 Commerce Center	Henderson	89014
J&J Marketing, Inc.	2545 Chandler Ave #10, 25, 26	Las Vegas	89120
Jackpot Printing AG, LLC	6765 S Eastern Ave #6	Las Vegas	89119
King Printing	3411 W Oquendo Rd	Las Vegas	89118
L&K Print	855 E Twain Ave #125	Las Vegas	89169
Larger Than Life, Inc.	4385 Cameron St #A	Las Vegas	89103
Las Vegas Banner Factory	4572 W Hacienda Ave	Las Vegas	89118
Las Vegas Custom Signs LLC	3575 W Cheyenne Ave #103	NLV	89032
Las Vegas Sign Pros	7745 Boswell Ct	Las Vegas	89139
Las Vegas Color Graphics	4265 W Sunset Rd.	Las Vegas	89118
Las Vegas Sun, Inc.	2275 Corporate Cir #280	Henderson	89074
Las Vegas Review-Journal	333 S Las Vegas Blvd	Las Vegas	89101
Las Vegas Weekly LLC			
Marita Alegre	1712 Flat Ridge Rd	Henderson	89014
Marx Digital Mfg, Inc.	1850 E Maule Ave	Las Vegas	89119
Master's Graphics LLC	3230 W Hacienda Ave #302	Las Vegas	89118
MB Exhibits LLC	5220 Steptoe St #2	Las Vegas	89122
Mega Structures, Inc.	4660 Berg St	NLV	89030
Moore Wallace North America	6305 Sunset Corporate Dr	Las Vegas	89120
National Signs (Kaufman) LLC	3830 Rockbottom St	NLV	89030
Nevada Business Magazine	1549 Foothills Village Dr	Henderson	89012
Nevada Color Litho	4151 N Pecos Rd #203	Las Vegas	89115
Never Late Printing	3920 E Patrick Ln #1	Las Vegas	89120
New Writers' Ink Publishing Company Inc.	4728 Cedar Ranch Ct	NLV	89031
NY Sign Experts LLC	1570 N Christy Ln	Las Vegas	89110
OkBanners	5050 Steptoe St #A1	Las Vegas	89122
Orbus LLC	4850 Statz St	NLV	89081

Name	Address	City	ZIP
Patrick's Signs, Inc.	5115 Arville St	Las Vegas	89118
Plasticard Locktech International LLP	1220 Trade Dr	NLV	89030
Predator Signs & Graphics LLC	954 Harbor Ave	Henderson	89002
Print Plus More	9550 S Eastern Ave #253	Henderson	89074
Printflix	1950 S Rainbow Blvd #104		89146
Proffiti	948 Empire Mesa Way	Henderson	89011
R&M Bindery LLC	6041 McLeod Dr	Las Vegas	89120
R.D. Talley Books Publishing LLC	2208 Chipplegate Way North	NLV	89032
Rapid Color, Inc.	6445 Karms Park Ct	Las Vegas	89118
Rawlins Graphics and Design	6255 McLeod Dr #1-4	Las Vegas	89120
Redsand Graphics and Printing LLC	3950 N Las Vegas Blvd #104	Las Vegas	89115
RGS Reprographic Solutions	6645 S Eastern Ave #101	Las Vegas	89119
RoxMedia Group LLC	2900 E Patrick Ln #7	Las Vegas	89120
Royal Printing Company Inc.	3390 S Valley View Blvd	Las Vegas	89102
Sarchi Solutions	1711 Highland Ave #A		89102
Scanlab Technologies	6625 S Valley View Blvd #232	Las Vegas	89118
Scooterbay Publishing, Inc.	2737 Craigmillar St	Henderson	
Showbiz Weekly, Inc.			
Sparks Marketing Corp.	4975 N Pecos Rd	NLV	89030
SpeedPro Imaging Gold Studio	6290 S Pecos Rd #300	Las Vegas	89120
Square Foot Printing LLC	4071 Silvestri Ln #B-3	Las Vegas	89120
Stella Brands Packing LLC	7060 W Warm Springs Rd #130	Las Vegas	89113
Sun Valley Imaging & Technologies	4685 Copper Sage St	Las Vegas	89115
Super Color Digital LLC	3451 W Martin Ave #A	Las Vegas	89118
Synq Solutions, Inc.	4855 Engineers Way #102	NLV	89081
Taylor Print & Visual Impressions, Inc.	4151 N Pecos Rd	Las Vegas	89115
The Plastic Man	3823 Renate Dr	Las Vegas	89103
Slip Seal Company LLC	4550 Donovan Way #112	NLV	89031
The UPS Store #1390	2657 Windmill Pkwy	Henderson	89074
Thegraphxshop LLC	608 Comodo St	Henderson	89011
Time Printing Inc	1224 Western Ave	Las Vegas	89102
Toryon Technologies, Inc	6672 Spencer St #400	Las Vegas	89119
Two Plus Two Publishing LLC	32 Commerce Center Dr	Henderson	89014
The UPS Store #6980	2300 Paseo Verde Pkwy	Henderson	89052
Valhalla Printing LLC	954 Harbor Ave	Henderson	89002
Valley Horse News LLC			
Vanwie, Lynda	9550 S Eastern Ave #253	Henderson	89074

Name	Address	City	ZIP
Vintage Expression 702 (The Robin Agency)	432 Ackerman Ln	Henderson	89014
Vision Sign, Inc.	6630 Arroyo Springs #600	Las Vegas	89113
Vista Exhibits, Inc.	3220 E Charleston Blvd		89101
Westrock CP	6405 E Centennial Pkwy	NLV	89115
Wilen Vegas	3325 W Sunset Rd	Las Vegas	89118
Yume Designs	1945 Buckeye Hill Ct	Henderson	89012

5.2.13 Potential Graphic Arts CTG RACT Emissions Reductions

EPA's CTG RACT documents identify a variety of options for controlling VOC emissions from inks, coatings, adhesives, and cleaning materials used in printing operations, including add-on controls (e.g., carbon absorbers, incinerators), waterborne materials, and work practices.

Table 24 provides EPA's recommended control efficiency for CTG RACT as applied to emissions in HA 212. RTP assumed 100% emissions reductions for CPP Acquisition assuming it no longer operates. For Berry Plastics, RTP assumed a 25% control efficiency for implementation of work practice standards. For the remaining point sources, RTP assumed a 92.5% control efficiency based on the average control for offset lithographic printing presented in the Graphic Arts CTG.

To adjust the nonpoint source emissions, RTP applied an average control efficiency for both CTGs. For flexible packaging, EPA's RACT recommendations include a range of emissions control efficiencies based on equipment age, with equipment installed after 1995 capable of achieving 80% emissions reductions. RTP used this figure and computed an average control efficiency across the two CTG of 66%. RTP then adjusted the total projected emissions reductions for an 80% rule effectiveness.

Table 24. Projected VOC Emission Reductions from Graphic Arts CTG RACT

Emissions Source Type	Name	Summer Weekday Emissions (tpd)	Control Efficiency (%)	2026 Projected Emissions Reduction (tpd)
	CPP Acquisition	0.002	100	0.00
	CPP Acquisition	0.056	100	0.06
Point	Las Vegas Color Graphics	0.02	92.5	0.02
	Las Vegas Review Journal	0.027	92.5	0.02
	Nevada Color Litho	0.0517	92.5	0.05
	Berry Plastics Corporation	0.030	25	0.03

Nonpoint	Solvent Utilization; Graphic Arts; All Solvents	2.551	66	2.36
Total Emissions Reductions		2.54		
Adjustment for 80% rule effectiveness			2.03	

Using this approach, RTP calculated the potential for 2.54 tpd of VOC emissions reductions from adopting a Graphic Arts CTG. RTP applied an 20% adjustment for rule effectiveness which results in 2.03 tpd potential VOC emission reductions from the CTG RACT.

5.3 CHEMICAL PROCESSES

5.3.1 Pharmaceutical

CTG: Control of Volatile Organic Emissions from Manufacture of Synthesized Pharmaceutical Products (Pharma CTG)

EPA Document Number: EPA-450/2-78-029

Conclusion:

DES submits a negative declaration for the Pharma CTG because there is no confirmed stationary source in HA 212.

Discussion:

EPA issued the Pharma CTG in 1978. This CTG recommends VOC emissions control levels for the manufacturing of pharmaceutical products by chemical synthesis, fermentation, extraction, formulation, and packaging, including production and separation of medicinal chemicals from microorganisms; manufacture of botanical and biological products by extraction of organic chemical from vegetative materials or animal tissue; and formulation of bulk pharmaceuticals into various dosage types, such as tablets, capsules, injectables, solutions, or ointments. In 1998, EPA also promulgated a NESHAP for this source category (40 CFR Part 63, Subpart GGG).

The Pharma CTG's presumptive RACT applies an emission unit- (rather than source-) based applicability threshold to some emission units of 15 lbs of VOC/day. While the Pharma CTG RACT includes recommended emissions controls based on emission unit type, EPA noted that a "...reasonable approach to regulation should investigate emissions levels and controls options for a given plant on a plant by plant basis" (Pharma CTG p. 2-4).

One SCC code is associated with this source category:

• 2301030000 Nonpoint Source: Pharmaceutical Industrial Processes

RTP was unable to locate point source-specific SCC codes. The ROP Inventory includes no emissions for this source category.

RTP identified several facilities through business licenses and Yellow Pages searches that could fall within the Pharma CTG source category. Although several new businesses manufacture

cannabidiol (CBD) and other products through extraction of chemicals from the hemp plant, DES previously evaluated potential emissions from CBD extraction operations and found them insignificant.

RTP investigated the list of potential businesses in Table 25 and concluded that the list includes distributors, with no manufacturing capabilities, and the rest are unlikely to have emissions exceeding the VOC RACT applicability threshold.

Table 25. Businesses Potentially Operating Pharmaceutical Operations

Name	Address	Description	URL
Advanced Physique Nutrition LLC	2700 E Patrick Ln 6	Protein powders	Advanced Physique Nutrition
Agua Street LLC	340 Sunpac CT #4		
Alcala Pharmaceuticals	6125 W Sahara Ave		
Alt Zero, Inc.	6285 McLeod Dr #1		Alt Zero / The Lab
American Nutritional Corporation	2150 Sunrise Ave		American Nutritional
Angel Care Products	3352 Wayward Ct.		
Artesyn Biosolutions	1771 South Sutro		
Bespoke Pharmaceuticals LLC	5795 N Hollywood Blvd #901		
Bio Fine	2762 Boise St		
Bob Adler Sales	8217 Quail Arroyo Ave		
BPG Limited	9517 Grand Canal Dr.		
CannVital NV LLC	6021 Badura Ave #120	Bulk CBD isolate	CannVital NV
Cellmedics Inc.			
Central Admixture Pharmacy Services	7061 W. Arby Ave		
Concierge Compounding	1879 Whitney Mesa Dr.		
Copley Pharmaceuticals	2215 Renaissance Dr.		
Cynet Corporation			Cynet Systems
Donjo LLC	5608 Jelsma Ave		
Enzymebiosystems	8250 Charleston Blvd #120		
Evergreen Organix	3669 Hacienda Ave		Evergreen Organix
Fibroplate, Inc.	6280 S Valley View Blvd #104		
Free for All, Inc.	8396 Teton Crest PI		
Frontier Pharmaceutical Distributors	5020 Schuster St		<u>Invisicare</u>
GB Sciences	3550 W Teco Ave		GB Sciences
Genesis Pharmaceutical	1710 Whitney Mesa Dr.		
Geneva Mfg LLC	3065 N Rancho Dr. #110		<u>Geneva</u>
GlaxoSmithKline	9232 Spruce Mountain Way		
Greenway Health Community LLC	6 Sunset Way #104		
Grove, Inc	1710 Whitney Mesa Dr.		
Herbalicious	2875 E Patrick Ln #A		<u>Herbalicious</u>
International Integrated Management	3800 Howard Hughes Pkwy		
Invicta Pharmaceutical			<u>Invicta</u> <u>Pharmaceutical</u>
IQ Medical Services	2224 Martinique Ave		
Janone, Inc	325 E Warm Springs Rd #102		
Kloehn Inc.	10000 Banburry Cross		
Las Vegas Trikes	10050 Banburry Cross Dr. #157		

Name	Address	Description	URL
Legend Pharmaceuticals	504 Lob Wedge Ct		
Ligand Pharmaceuticals	3753 Howard Hughes Parkway #355		
Linden, Inc.	7370 Eastgate Rd #110		
Liquid Chronic E Liquid	3230 Polaris Ave		Liquid Chronic
Longevinex	4425 S Jones Blvd		
McKesson Corp.	3008 Via Sarafina Dr.		
Medicreations	6370 Annie Oakley Dr.		
Medigard	101 Convention Center Dr.		
Medisca Inc.	3955 W Mesa Vista Ave		MEDISCA
Medisource	3975 W Quail Ave #10		
Mesa Oils	1051 Olsen St #1011		
MMI Laboratories, Inc.	4216 N Pecos Rd #106		
Molecular Throughput	5385 Cameron St #7		
Musclepharm Corporation	3753 Howard Hughes Pkwy #200-849		
My Life Bak	2767 Cherrydale Falls Dr		
Nano Solutions, LLC	601 E Charleston Blvd #100		
National Homeopathic Labs	4250 Wagon Trail Ave		Homeopathic Labs
Nectar Bath Treats	2020 Pama Ln		Nectar Bath Treats
Neometrx	3443 Neeham Rd		
Neutra Corp.	400 4th St #500		
Nevada Health RX	61 Spectrum Blvd		
Nevada Organic Remedies	3705 E Post Rd		
Novum Pharmaceutical Research	3700 Pecos-McLeod		Novum Research
Nuro Pharma	6380 Polaris Ave #B		
Nutri Pharmaceuticals Research, Inc.	3282 Rabbit Blush Ct		
Pacifix Group	10413 Shadowland Ave		
Pharmacyte Biotech	3960 Howard Hughes Pkwy #500		
PHP Institute	5961 McLeod Dr	CBD	PHP Institute Better Business Bureau Profile
Praxsyn Corp	61 Spectrum Blvd		
Procaps Laboratories	430 Parkson Rd		
R&J Productions	1817 Hermitage Dr.		
Re Scents	7927 Aspendale Dr	Cologne / Perfume	REBL Scents
Real Aloe Solutions	7470 Dean Martin Dr. #102		
Reef Dispensary	3400 Western Ave		
Regulatory Compliance Inttvs	P.O. Box 959651		
Silver Sage Wellness LLC	4071 Ponderosa Way		
Skin Visible Pharmaceuticals	6320 S Sandhill Rd		
Spectrum Pharmaceuticals	11500 S Eastern Ave #240		
Sphaera Pharma, Inc	1810 E Sahara Ave #787		
Sprayable Energy LLC	3651 Lindell Rd. #D1113		
Syncor International Corp	61 Spectrum Blvd		Syngene CRO
Thinkbiome LLC	848 Rainbow Blvd #2967		
Unifern LLC	7720 Eastgate Rd		
Wild Leaf Holdings U.S. LLC	4751 Vanderberg Dr #A		<u>Wildleaf</u>

Name	Address	Description	URL
Worldwide Clinical Trials	11024 Calder Ave		
Yew Biopharm	723 S Casino Center Blvd		
Zurich Pharmaceuticals	2850 W Horizon Pkwy		

5.3.2 Polymers and Resins

CTG: Control of Volatile Organic Compound Emissions from Manufacture of High-Density Polyethylene, Polypropylene, and Polystyrene Resins (Polymer and Resins CTG)

EPA Document Number: EPA-450/3-83-008

CTG: Control of Volatile Organic Compound Leaks from Synthetic Organic Chemical and Polymer Manufacturing Equipment (Equipment Leak CTG)

EPA Document Number: EPA-450/3-83-006

Conclusion:

DES submits a negative declaration for the Polymer and Resins CTG because there is no identified stationary source in the source category operating within HA 212.

Discussion:

EPA issued the Polymer and Resins and the Equipment Leak CTGs in 1983 to regulate emissions from plastic products, synthetic resins, synthetic rubber, and organic fibers. The source category includes facilities operating under SIC codes 2821–2824. The Polymer and Resins CTG covers only continuous processes and only polymer manufacturing in the polyethylene, polypropylene, and polystyrene industry. EPA also promulgated NSPS for the polymer manufacturing industry in 1990 (40 CFR Part 60, Subpart DDD).

The following SCC codes are associated with this source category:

•	30108001	Point Source: Polymer and Resin – General
•	30108004	Point Source: Polymer and Resin – Material Recovery
•	30108003	Point Source: Polymer and Resin – Polymerization Reaction
•	30108005	Point Source: Polymer and Resin – Product Finishing
•	30108002	Point Source: Polymer and Resin – Raw Material Preparation
•	30880001	Point Source: Rubber and Misc – Plastic Products Equipment Leaks
•	30800700-99	Point Source: Rubber and Misc – Plastic Products
•	30800800-899	Point Source: Rubber and Misc – Plastic Products
•	30800699	Point Source: Rubber and Misc – Plastic Products – Other Not Classified
•	30800901	Point Source: Polystyrene

•	30102437	Point Source: Acrylic and Modacrylic Fibers
•	30801001–09	Point Source: Rubber and Misc – Plastic Products – Adhesives and Other
•	30108202	Point Source: Polymerization – Batch Cell
•	30108219	Point Source: Polymerization – Centrifuge
•	30102670	Point Source: Polystyrene – Stripper
•	2430000000	Nonpoint Source: Rubber and Plastics – Manufacturing Solvents
•	2308000000	Nonpoint Source: Rubber and Misc Plastic Products

Five stationary sources reporting point source emissions under SCC codes associated with the Polymer and Resin CTG source category are in the ROP Inventory; however, there are no nonpoint source emissions in the inventory. See Table 26.

Table 26. Polymer and Resin VOC Emissions in ROP Inventory

scc	Facility	2017 Emissions Inventory (tpy)	2017 Summer Weekday Emissions (tpd)	2026 Summer Weekday Emissions (tpd)*
30800724	Artesian Spas	1.530	0.0042	0.0042
30800802	Metl Span	2.420	0.0066	0.0066
30800802	Universal Urethane	14.370	0.0394	0.0394
30801005	Metl Span	2.180	0.0060	0.0060
TOTAL		36.64	0.1005	0.1005

^{*2023} emissions for point sources based on 1997 8-hour Ozone Second Maintenance Plan Emissions Inventory Estimates.

RTP reviewed the point sources in the inventory and determined that none of the point sources are part of the Polymer and Resin CTG source category. Artesian Spas's emissions are below EPA's general presumptive RACT level of 15 lbs of VOC/day. Universal Urethane's emissions, although reported under a rubber and miscellaneous plastic products category, are related to urethane foam production (SIC 3086), which is not part of the Polymer and Resin CTG source category. Metl Span, now known as Nucor Insulated Panel Group, Inc., operates a panel manufacturing and panel coating line under SIC code 3448 (Prefabricated Metal Building Components) which is not part of the Polymer and Resins CTG source category.

RTP located other companies through a search of the Yellow Pages and business licenses whose company descriptions suggest that the business could involve polymer and resin operations (Table 27).

A minor source permit for Primex Plastics identifies the facility as operating under SIC code 3081 (Plastic Films and Sheets), with a VOC PTE of 8.38 tpy. However, this SIC code is not part of the Polymer and Resins CTG source category. RTP reviewed the other businesses in Table 27 and determined they also were unlikely to emit above the CTG RACT applicability threshold.

Table 27. Businesses Potentially Engaged in Polymer and Resin Operations

Name	Address	ZIP	Description
Boxabl, Inc.	5345 E North Belt Rd #100	89115	Foam & house construction/ architectural coating
Deslauriers, Inc.	900 W Warm Springs Rd #109	89011	Miscellaneous - plastic injection molding products
Foster West	4336 Losee Rd #6–9	89030	Medical plastics
Kreysler & Assoc.			Plastic composite molded building material
Kymofoam	9765 Turtlehead Court / 3300 Sunrise Ave 101	89117	Polyurethane foam manufacturer; chemicals and allied products; resins and plastics
Parker Plastics Nevada LLC	4700 Engineers Way #101	89030	Plastics
Polymershapes LLC	6435 S Valley View Blvd #A	89118	Plastics manufacturing or distributor
Poly-West, Inc.	251 Conestoga Way	89002	Plastics manufacturing and recycling
Primex Plastics	752 Turtleback Rd	89024	Plastic extrusion facility
The Slip Seal Company LLC	4550 Donovan Way #112	89031	Rubber products and packaging
Welch Plastics	4080 W Desert Inn Rd #W-110	89102	Plastic
Westfall Technik, Inc.	3883 Howard Hughes Pkwy #590		Molded plastic parts

5.3.3 Rubber Tires Manufacturing

CTG: Control of Volatile Organic Emissions from Manufacture of Pneumatic Rubber Tires (Rubber Tire CTG)

EPA Document Number: EPA-450/2-78-030

Conclusion:

DES submits a negative declaration for this CTG category because there are no identified stationary sources in the source category operating within HA 212.

Discussion:

EPA established this CTG in 1978 to reduce emissions from the Rubber Tire source category. The CTG recommends emissions control for manufacturing processes such as under-tread cementing, tread-end cementing, bead dipping, and green tire spraying. EPA also promulgated an NSPS (40 CFR Part 60, Subpart BBB) and NESHAP (40 CFR Part 63, Subpart XXXX) for the source category.

The following SCC codes are associated with this source category:

• 30800101–199 Point Source: Rubber Tire Solvent – Mixing and Misc

Operations

• 40700401–40799998 Point Source: Rubber Tire Solvent – Storage

RTP located no point or nonpoint source emissions in the ROP Inventory for facilities in the Rubber Tire Manufacturing source category. A national list of rubber tire manufacturers

(available at <u>U-Tires</u>) shows no manufacturers located in Clark County. DES concludes there are no stationary sources operating in HA 212.

5.3.4 Synthetic Organic Chemical Manufacturing Industry

CTG: Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical Manufacturing Industry (SOCMI CTG 2)

EPA Document Number: EPA-450/4-91-031

CTG: Control of Volatile Organic Compound Emissions from Air Oxidation Processes in Synthetic Organic Chemical Manufacturing Industry (SOCMI CTG)

EPA Document Number: EPA-450/3-84-015

CTG: Control of Volatile Organic Compound Leaks from Synthetic Organic Chemical and Resin Manufacturing Equipment

EPA Document Number: EPA-450/3-83-006

Conclusion:

DES submits a negative declaration for this CTG source category because there is no identified stationary source in the category operating within HA 212.

Discussion:

In 1985, EPA issued SOCMI CTG 1, which recommended emissions controls for air oxidation processes. The presumptive RACT level is based on use of a combustion device that reduces emissions to 98% by weight or 20 ppm. EPA followed CTG 1 by promulgating three NSPS in 1990–1993 (40 CFR Part 60, Subparts III, NNN, and RRR) that regulate emissions from air oxidation processes, reactor processes, and distillation operations.

Multiple SCC codes are associated with this source category, for example:

•	30117402	Point Source: Air Oxidation – Reactor
•	30181001	Point Source: Air Oxidation – Reactor – SOCMI
•	30119002	Point Source: SOCMI Reactor – Acetone
•	30116902	Point Source: SOCMI Reactor – Alkylation
•	30125802	Point Source: SOCMI Reactor – Benzene
•	30120553	Point Source: SOCMI Reactor – Dehydration
•	30121003	Point Source: SOCMI Reactor – Dehydrogenation
•	30109153	Point Source: Light End Distillation – Acetone
•	30130115	Point Source: Atmospheric Distillation – Vents

No point or nonpoint source emissions are in the ROP Inventory for the SOCMI CTG Source Category.

RTP identified the following companies that could fall within the SOCMI CTG source category through Yellow Pages listings of chemical manufacturers and business license information.

Table 28. Businesses Potentially Engaged in SOCMI Operations

Name	Address	Description
A-1 Chemical/Winzer	4755 Procyon St	
Armourcoat Surface Finishes, Inc	4330 Production Ct	Coatings
Bochasweet	7322 S Rainbow Blvd	
Brenntag Pacific	3880 E Craig Rd	
Brenntag West		
Cardinal Paint and Powder, Inc.	1900 Aerojet Way	
Chemstation	4440 Mitchell St	
Dioxide Pacific	2654 W Horizon Ridge #B-562	
Fabrichem Systems	1100 Foremaster Ln	
Maintenance Solutions Inc	9804 Bearpaw Ave	
Malicious Liquids, Inc	7665 Commercial Way #D	Miscellaneous - manufacturing e-liquid
May Chemical	PO Box 34525	
Nalco	333 N Rancho Dr	
Nevada Chemical Technologies	8013 Shorecrest Dr	
Nitrex, Inc.	201 E Mayflower Ave	
Nitrex, inc.	2925 Brookspark Dr	Chemical
Olin Corporation	245 Fourth St.	Alkalies and chlorine manufacturing - Chlorine mfg
Sahalee Liquor Company LLC	3866 Civic Center Dr	Alcohol; unknown whether retail, wholesale, or producer
Specchem LLC	3930 E Lone Mountain Rd	Chemical
St Dupont	3355 S Las Vegas Blvd	
The Slip Seal Company LLC	4550 Donovan Way #112	Rubber products and packaging
Timet	181 N Water St Gate 3	Titanium
UCI	3977 W Oquendo Rd #G	Paint and coating mfg - paints (except artist's) mfg
Univar USA	4650 S Valley Blvd	
Zenith Energy Enzymes, Inc	980 Mary Crest Rd #E	Miscellaneous - Blending and processing, packaging and distributions of enzymes products for agriculture, construction, oil field

Name	Address	Description
		services, pet shampoo, swimming pool cleaning, & industrial treatment

After further investigation, DES found that either the listed companies' operations were outside the scope of the CTG regulations (e.g., manufacturers inorganic chemicals) or emissions were unlikely to exceed the CTG applicability threshold. Thus, there are no stationary sources operating within HA 212.

5.4 PETROLEUM PROCESSES

5.4.1 Cutback Asphalt

CTG: Control of Volatile Organic Emissions from Use of Cutback Asphalt

EPA Document Number: EPA-450/2-77-037

Conclusion:

DES will adopt a regulation to satisfy CTG RACT requirements for this source category.

Discussion:

EPA issued the Cutback Asphalt CTG in 1977. Cutback asphalt, used for paving, is liquified with petroleum distillate. Emissions occur during application of the product while paving roads.

One SCC code is associated with this source category:

• 2461021000 Nonpoint Source: Nonindustrial – Cutback Asphalt

Table 29 shows 2026 summer weekday emissions for both HA 212 and all of Clark County.

Table 29. Cutback Asphalt VOC Emissions in ROP Inventory

scc	Description	Clark County 2026 Summer Weekday VOC (tpd)	HA 212 2026 Summer Weekday VOC (tpd)	
2461021000	Nonindustrial, Cutback Asphalt	0.83	0.78	

5.4.2 Other Potential Cutback Asphalt Operators

Based on Yellow Pages searches and business license reviews, the following businesses may use cutback asphalt in their operations.

Table 30. Businesses Potential Engaged in Use of Cutback Asphalt

Name	Address	City	ZIP
American Eagle Ready Mix LLC	120 W Delhi Ave	NLV	89032

Name	Address	City	ZIP
American Eagle Ready Mix LLC	14355 Dixon St	Las Vegas	
Cemex Construction Materials Pacific LLC	10025 Moccasin Rd		89143
Cemex Construction Materials Pacific LLC	4001 Losee Rd	NLV	89030
Cemex Construction Materials Pacific LLC	5030 N Lamb Blvd	NLV	89030
Cemex	14998 S Las Vegas Blvd	Las Vegas	89124
Hybrid International LLC	235 W Brooks Ave	NLV	89030
Jensen Enterprises Inc.	3840 N Bruce St	NLV	89030
Las Vegas Paver Mfg. LLC	6645 Gomer Rd	Las Vegas	89139
Robertson's Ready Mix	5255 Beesley Dr	Las Vegas	89115
Robertson's Ready Mix	160 Fourth St	Henderson	89015
Robertson's Ready Mix	10811 W Washburn Rd	Las Vegas	89166
Robertson's Ready Mix	14575 Arville St	Las Vegas	89141
Sierra Ready Mix Limited Liability Company	4150 Smiley Rd	NLV	8915
Southwest Liquid Asphalt & Emulsions LLC	3752 N Bruce St	NLV	89030
Spartan Industries	4750 Copper Sage St	Las Vegas	89115
Sterling Nevada LLC	2825 Coleman St	NLV	89032
Western Pacific Precast LLC	5320 Sloan Rd	Sloan	89054
Ergon Asphalt and Emulsions Inc	3901 W Ponderosa Way	Las Vegas	89118
Nevada Ready Mix Bonanza	601 W Bonanza Rd.	Las Vegas	89106
Las Vegas Paving Corporation	W Lone Mountain Rd.	Las Vegas	89129
Las Vegas Paving Corporation	9325 S Jones Blvd	Las Vegas	89139

5.4.3 Potential Cutback Asphalt CTG RACT VOC Emission Reductions

The presumptive RACT emissions control is the substitution of emulsified asphalt for cutback asphalt. EPA estimated this RACT would lead to nearly 100% control of asphalt emissions. In 1978 and 1979, shortly after EPA issued the CTG RACT document, it issued three memoranda to clarify RACT requirements for the asphalt industry (Rhoads 1978, Rhoads 1979a, Rhoads 1979b). EPA explained that a total ban on cutback asphalt use was technically infeasible, and that use of cutback asphalt should be permissible for certain applications. It recommended VOC content limits ranging from 3–12% depending on the application; if states imposed a blanket VOC content limitation, then a range of 5–7% would be acceptable.

Section 60.4 of the AQRs prohibits use of cutback asphalt in the Las Vegas Valley (which includes HA 212) except in limited circumstances. EPA approved this regulation for inclusion in the Nevada SIP in 1984; however, the Board of County Commissioners repealed Section 60.4 in 2011 and DES can no longer enforce it. Thus, the rule produces no verifiable emissions reductions.

EPA's 2017 NEI emissions estimates, which the ROP Inventory reflects, were based on uncontrolled emissions and projected vehicle miles traveled (EPA 2021b). In the 2020 NEI, EPA applied an emissions factor of 815.97 lb of VOC/ton of asphalt in computing emissions, and RTP used this emissions factor to compute future emission reductions. This is roughly equivalent to 40% VOC content by weight. By requiring the VOC content of asphalt to be no greater than 0.5% by volume and assuming 80% rule effectiveness, DES would achieve a 0.62 tpd VOC emissions reduction within HA 212. By expanding the RACT rule to all of Clark County, DES would achieve a 0.66 tpd VOC emissions reduction (Table 31).

Table 31. Projected VOC Emissions Reductions from Cutback Asphalt CTG RACT for HA 212 and Clark County

Parameter or Calculation	2026 HA 212 Projected Summer Weekday (tpd) Value	2026 Countywide Summer Projected Weekday (tpd)	Unit
SCC 2461021000	0.78	0.83	tpd VOC
Emissions factor	815.97	815.97	lbs VOC/ton
Tons of asphalt per day = EF /2026tpd	1.92	2.04	tpd asphalt
Standard density of asphalt	145	145	lb asphalt/ft3
Avg. density of solvent (med. cure)	7.82	7.82	lb VOC/gal
Conversion factor	7.48	7.48	gal per ft ³
lb asphalt/gal asphalt = (145 / 7.48)	19.39	19.39	lb/gal
0.5% by VOC volume by weight = (0.005 • (7.82/19.39))	0.00202	0.00202	lb VOC/lb asphalt
Emissions Reductions = 0.78 - (0.0020 • 1.92)	0.78	0.83	tpd VOC
Total Emission Reductions: 80% Rule Effectiveness = 0.78 - (0.78 • 2) + (0.0020 • 1.92 • 0.8)	0.62	0.66	tpd VOC

5.4.4 Gasoline Loading Terminals and Bulk Gasoline Plants

CTG: Control of Hydrocarbons from Tank Truck Gasoline Loading Terminals (Terminals CTG)

EPA Document Number: EPA-450/2-77-026

CTG: Control of Volatile Organic Emissions from Bulk Gasoline Plants (Bulk Plant CTG)

EPA Document Number: EPA-450/2-77-035

CTG: Control of Volatile Organic Compound Leaks from Gasoline Tank Trucks and Vapor Collection Systems (Leaks CTG)

EPA Document Number: EPA-2-78-051

Conclusion:

Existing SIP-approved Sections 51 and 60.1 of the AQRs meet CTG RACT requirements Nevertheless, DES will adopt 40 CFR Part 60, Subparts XX and Xa, and 40 CFR Part 63, Subpart BBBBBB into the SIP to satisfy CTG RACT Requirements and improve rule effectiveness by promoting consistency and thoroughness in compliance obligations.

Discussion:

EPA issued two CTGs recommending emissions controls for gasoline loading plants and terminals: the Terminals CTG applies to larger facilities with daily throughputs of greater than 76,000 liters (l) (20,000) gal of gasoline/day, while the Bulk Plant CTG applies to smaller facilities with daily throughput below this value. Bulk gasoline plants serve as secondary distribution facilities that receive fuel from gasoline terminals and then transport it to local businesses via account truck. The Bulk Plant CTG applies to splash fill operations.

The Terminals CTG applies to loading gasoline into tank trucks at bulk terminals and requires submerged fill or bottom loading, or top filling with a vapor control system reducing emissions to 80 mg TOC/l or less of gasoline.

The Leaks CTG applies to gasoline trucks equipped for vapor collection, and bulk terminals, bulk plants and service stations equipped with a vapor balance and/or vapor processing system. It requires gasoline trucks to maintain pressure changes below certain levels and avoid visible leaks. It also sets standards to avoid leaks during loading and unloading.

The following SCC codes are associated with these source categories:

•	40600136	Point Source: Petroleum & Petroleum Product Transport – Splash Loading
•	40600101	Point Source: Petroleum & Petroleum Product Transport – Splash Loading
•	40600126	Point Source: Petroleum & Petroleum Product Transport – Submerged Loading
•	40600141	Point Source: Petroleum & Petroleum Product Transport – Balanced Submerged Loading
•	40400152	Vapor Collection Losses – Bulk Terminals
•	2501050000	Nonpoint Source: Bulk Gasoline Terminals – All Products
•	2501055120	Nonpoint Source: Bulk Terminals and Plants – Area Sources

There are two bulk gasoline plants/gasoline terminals listed in the ROP Inventory. None of the reported emissions from these facilities are from splash loading, so they would not be subject to the Bulk Plant CTG.

Table 32. Gasoline Terminal and Bulk Plant VOC Emissions in ROP Inventory

scc	Business	SCC Description	2017 Summer Weekday (tpd)	2026 Summer Weekday (tpd)
40400150	Pro Terminal Operators	Loading Rack	0.0422	0.0438
40400130	Pro Terminal Operators	Evaporative Losses	0.0422	
40400470	Dro Torminal Operators	Tanks	0.0224	0.0337
40400178	Pro Terminal Operators	Internal Floating Roof	0.0334	
40400453	Harry Reid International Airport Tank Farm	Thermal Oxidizer	0	0
40400153		Vapor Control Unit Losses	0	
40400199	Harry Reid International Airport Tank Farm	Tank	0.0392	0.0392
40400199		Other Not Classified	0.0392	
40400250	Harry Reid International Airport Tank Farm	Loading Racks	0.0013	0.0013
2501050120		Bulk Terminals and Plants – Area Sources	1.29	1.10622

5.4.5 Other Potential Gasoline Terminal or Bulk Plant Operators

RTP identified the following companies operating bulk gasoline terminals or plants through Yellow Pages or web searches.

Table 33. Businesses Potentially Engaged in Gasoline Terminal or Bulk Plant Operations

Company	Address	City	ZIP	
River City Petroleum, Inc.	4915 North Sloan Lane	Las Vegas	89115	
Eastern Sierra Oil	4825 North Sloan Lane	Las Vegas		
Haycock Petroleum Co.	715 West Bonanza Road	Las Vegas		
Rebel Oil Co.	2200 Highland Dr.	Las Vegas		
SC Fuels		NLV		
Olympic Petroleum		Las Vegas		
RelaDyne	2420 Losee Rd.	NLV	89030	

5.4.6 Potential Gasoline Terminals and Bulk Plant CTG RACT Emissions Reductions

The Bulk Plant CTG provides three alternatives for imposing regulations:

- Option 1: Submerge fill or bottom fill of tank trucks;
- Option 2: Option 1 plus vapor balancing with storage tank; or
- Option 3: Option 2 plus vapor balancing for displaced truck vapors.

The Terminal CTG recommends an emissions limitation of 80 mg/l of gasoline loaded, assuming use of vapor control system achieving approximately 87% control efficiency. The Leaks CTG includes work practice requirements to ensure good maintenance and reduce equipment leaks.

Clark County has three SIP-approved AQRs that control emissions from gasoline loading Sections 51, and 52 and 60.1 (Table 34). AQR 52 is discussed further in Section 5.4.7 in reference to Gasoline Service Stations.

Table 34. Emissions Control Requirements for Bulk Gasoline Plants and Terminals in Air Quality Regulations

AQR No.	Name	Requirements	Version Approved	Current Version
51	"Petroleum Product Loading into Tank Trucks and Trailers"	Vapor collection and disposal or equivalent; bottom loading or submerged fill; properly functioning vapor collection with vapor tight seal	1978	2004 (no substantive changes)
52	"Handling of Gasoline at Service Stations, Airports and Storage Tanks"	Vapor-laden tank truck refilled only at facility with vapor control system; permanent submerge fill	1981	Repealed
60.1	"Evaporation and Leakage"	Requires use of best practices to reduce leaks	1979	Repealed

Table 34 shows that Section 51 and 60.1 together meet the third alternative presumptive RACT level of the Bulk Plant CTG, and meets the levels recommended in the Terminals CTG for gasoline tank loading by requiring vapor tight seals on a properly designed and operated vapor collection system. Section 60.1 also control leaks that could occur during these operations. While Section 51 does not impose the specific emissions limitation recommended in the Terminals CTG, DES requires a minimum 90% control efficiency (Section 51.4.3) which is roughly equivalent to the 87% control efficiency EPA assumed in the CTG cost analysis for the Terminals CTG. Section 51 is thus as stringent as both the Terminals and Bulk Plant CTGs RACTs. AQR Section 60.1 meets the Leak CTG by requiring use of work practices to reduce leaks. Collectively, these rules meet or exceed presumptive RACT recommendations for these CTG categories.

Nonetheless, the Board of County Commissioners repealed Section 60.1 and it is no longer enforceable; and although existing Section 51 requires compliance with the presumptive RACT emissions controls levels during storage and loading activities, DES is electing to replace both rules with existing federal NSPS and NESHAP regulations. This will streamline requirements and promote consistency and thoroughness in meeting compliance obligations.

Specifically, DES proposes to incorporate the NSPS in 40 CFR Part 60, Subparts XX, and Xa, and NESHAP in 40 CFR Part 63, Subpart BBBBBB into the SIP to satisfy CTG RACT requirements for these CTG source categories.

The following table displays the general control requirement of the NSPS and NESHAP that DES will adopt into the SIP to meet RACT, and explains how the rules meet the existing requirements of AQR 51 and are as least as stringent as EPA's presumptive RACT.

Table 35. NSPS and NESHAP Comparison to AQR and CTGs

Table 35. NSPS and NESHAP Comparison to AQR and CTGs							
Regulation	Affected Source	Construction or Reconstruction Date	Regulatory Citation	Requirement	General Exemption	AQR Sections 51 and 60.1 Comparison	CTGs Comparison
Part 60, Subpart XX Bulk Gasoline Terminals	All the loading racks at a bulk gasoline terminal (> 75,700 l/day gasoline or 20,000 gal/day throughput) which deliver liquid product into gasoline tank trucks	12/17/80-6/10/22	§ 60.502 Bulk Gasoline Terminal Loading Rack	Exceeds 90% control efficiency in 51.4, Equip with a vapor tight vapor collection system designed to collect the total organic compounds vapors displaced from tank trucks during product loading with emissions ≤ 35 mg TOC/liter gasoline loaded, or if equipped with existing system (constructed before Dec 17, 1980) ≤ 80 mg/l.		Exceeds 90% control efficiency in 51.4 for new sources, and is roughly equivalent to control efficiency requirement for existing sources.	Meets or exceeds 80 mg/L presumptive RACT.
Part 60, Subpart XXa Bulk Gasoline Terminals	Loading racks at a bulk gasoline terminal (> 75,700 l/day gasoline or 20,000 gal/day throughput	cks at a lk soline minal (> ,700 ay soline or ,000 l/day		Use submerged fill and Equip with vapor tight vapor collection system to collect vapors from cargo tanks during loading.			
	hat deliver liquid product into gasoline cargo tanks including the gasoline loading racks, the vapor collection systems, and the vapor processing system	6/11/22 or after	§ 60.502a Bulk Gasoline Terminal Loading Rack	New Units: use Thermal Oxidizer reduce emissions to < 1.0 mg TOC/I; 3-hour rolling average temp, or vapor recovery system < 550 ppm TOC on 3-hour rolling average		Meets emissions control system requirement in 51.1, and exceeds control requirement for new sources.	Meets required control for existing sources and exceeds required controls for new sources.
Part 63, Subpart BBBBB Bulk Terminals and Plants	Area source bulk gasoline terminal (≥ 20,000 gal/ day gasoline throughput), pipeline breakout station,	None	§ 63.11086 Bulk Gasoline Plant Loading Tanks and Trucks	If > 250 gallon, load tank or truck using submerged fill that meets specifications by date installed, and all tanks, minimize gasoline spills and follow other work practices such as monthly leak inspection.	Gasoline Service Stations	Meets 51.1.1 requirement to use submerged fill; although rule has no exemption, exempt facilities are covered by new AQR 102.	Meets presumptive RACT control option 1.
and Pipeline Facilities	pipeline pumping station, and bulk gasoline plant (< 20,000 gal) as specified		§ 63.11088 and Table 2 Bulk Gasoline Terminal Loading Rack	If total gasoline throughput ≥ 250,000 gallons/day, equip with vapor collection system and reduce to 80 mg TOC/I		Meets 51.1 and 51.4.1 requirement for vapor collection and disposal.	Meets 80 mg/L presumptive RACT control requirement.

Regulation	Affected Source	Construction or Reconstruction Date	Regulatory Citation	Requirement	General Exemption	AQR Sections 51 and 60.1 Comparison	CTGs Comparison
			§ 63.11088 and Table 2 Bulk Gasoline Terminal Loading Rack	If total gasoline throughput < 250,000 gallons/day use submerge fill with pipe no more than 6 inches from bottom		Meets 51.1.1 requirement to use submerged fill.	Does not meet presumptive RACT emissions limitation of 80 mg/l, but this level of emissions control would be required for sources under Subpart XX.
			§ 63.11089 Bulk Gasoline Terminal and Plants	Monthly leak inspection		Meets 60.1 best practice requirement	Meets or exceeds presumptive RACT leak detection program.

EPA established or revised these federal emissions standards after determining presumptive RACT for the categories, and as such, they represent a progression in control and cost considerations.

Although there are some differences in applicability of the federal rules and the AQR, DES determined that these differences are not meaningful such that they decrease the stringency of the SIP by incorporating the federal rules by reference. For example, Subpart XX regulates facilities with a throughput greater than 20,000 gal/day, while AQR 51 includes an annual throughput limit that when divided evenly throughout the year would result in a lower daily throughput applicability criterion. DES used the annual throughput limit, however, to provide greater flexibility in operations, and a facility is more likely to exceed the 20,000 gal/day applicability of Subpart XX than the annual limit in AQR 51, making the applicability of Subpart XX more stringent than AQR 51.

While Subpart XXa does not include a specific throughput limit equivalent to the presumptive RACT 80 mg/L emissions limitation, facilities subject to Subpart XXa are also likely subject to Subpart BBBBBB which includes this specific limit and is being included in the rules DES will incorporate by reference in the SIP. Collectively, DES determined that EPA's federal rules represent the most current assessment of emissions control capabilities to meet the best available system of emission reduction under Section 111 of the Act, and the maximum achievable control technology ("MACT") under Section 112 of the Act. These regulatory standards exceed the statutory requirement for CTG RACT, and are equivalent or more stringent than AQR Section 51. DES therefore concludes that adopting these rules into the SIP will more than satisfy CTG RACT requirements.

DES estimates no additional emissions reductions will result from the CTG RACT requirements, but there will also be no loss in emissions reduction from removing AQR Section 51 from the SIP. The replacement of AQR 51 with the federal rules satisfies the Act's anti-backsliding provisions in Sections 110(l) and 193 because the federal rules are equivalent or more stringent than AQR Section 51, and adopting the federal rules will improve rule effectiveness by

consolidating regulatory compliance obligations under the more detailed compliance demonstration requirements of the federal rules.

5.4.7 Gasoline Service Stations

CTG: Design Criteria for Stage I Vapor Control Systems – Gasoline Service Systems (Gasoline CTG)

EPA Document Number: EPA-450/R-75-10

Conclusion:

DES will adopt a regulation to satisfy CTG RACT requirements for this source category.

Discussion:

EPA issued the Gasoline CTG in 1975 to control the release of VOC from commercial gasoline stations. The CTG includes requirements to use Stage 1 vapor recovery when filling a storage tank and submerged fill from delivery vehicles to tanks, along with requirements to inspect and maintain the vapor recovery system. The CTG presumptive RACT applies to gasoline service stations exceeding 10,000 gal/month.

Some SCC codes associated with Gasoline Service Stations identify emissions after application of CTG RACT-level controls (i.e., Stage 1 vapor balance and submerge fill).

The following SCC codes are associated with "uncontrolled emissions":

- 2501060052 Nonpoint Source: Service Stations Splash Filling
- 2501060050 Nonpoint Source: Gas Stations Total

There are no emissions in the ROP Inventory associated with these SCC codes. Emissions from gas stations are associated with codes showing compliance with CTG RACT requirements.

5.4.8 Potential VOC Emissions Reductions from Gasoline Station CTG RACT

Numerous gas stations operate in HA 212. The relevant SIP-approved AQR is Section 52, "Handling of Gasoline at Service Stations, Airports and Storage Tanks." This regulation meets the requirements of the Gasoline Service CTG because it requires use of submerged filling and a vapor balance system for all gas stations constructed after Jan. 1, 1978. However, the Board of County Commissioners repealed Section 52 in 2011 and DES no longer enforces it.

In 2008, EPA promulgated a NESHAP regulating hazardous air pollutants (HAP) emissions from gasoline stations (40 CFR Part 63, Subpart CCCCCC). This NESHAP requires gasoline stations with a monthly throughput of 10,000 gallons or more to use submerge fill requirements consistent with Gasoline Service CTG RACT requirements (40 CFR Part 63.11117(b)). The NESHAP does not require facilities to use vapor balance systems unless gasoline throughput exceeds 100,000 gallons a month.

Because Section 52 is no longer in the AQRs and the NESHAP does not cover all gasoline stationary operations operating in HA 212, DES will promulgate a new CTG rule for this source category. DES estimates no additional emissions reductions will occur from sources already included in the ROP Inventory.

5.4.9 Oil and Natural Gas Industry

CTG: Control of Volatile Organic Compound Equipment Leaks from Natural Gas/Gasoline Processing Plants

EPA Document Number: EPA-450/3-83-007

CTG: Control Techniques Guidelines for the Oil and Natural Gas Industry

EPA Document Number: EPA-453/B-16-001

Conclusion:

DES submits a negative declaration for the Oil and Natural Gas source categories because there are no confirmed stationary sources operating in HA 212.

Discussion:

EPA issued two CTGs affecting the natural gas industry. The first, issued in 1983, recommends controls to reduce emissions from equipment leaks at natural gas processing plants. The second, issued in 2016, more broadly recommends emissions controls for the oil and natural gas processing plants.

In the first CTG, the natural gas processing plant includes facilities separating natural gas liquids from field gas or fractionating components of the gas into ethane, propane, butane, and natural gas. The category does not include compressor stations, dehydration units, sweetening units, field treatment, underground storage, liquified natural gas, or field gas gather systems. The second CTG defines the source category to include all operations involved in extraction, processing, transmission, storage, and distribution of natural gas and crude oil to the point of custody transfer at a petroleum refinery.

RTP was unable to identify specific SCC codes that correspond to these operations. A search of business licenses identified no companies that may fall within this category. The U.S. Energy Information Administration identifies no natural gas processing plants in Nevada (EIA Independent Statistics and Analysis, accessed 11/29/2022). Therefore, no identified stationary sources in these CTG source categories operate within HA 212.

5.4.10 Petroleum Storage

CTG: Control of Volatile Organic Emissions from Storage of Petroleum Liquids in Fixed-Roof Tanks (Petroleum Storage CTG 1)

EPA Document Number: EPA-450/2-77-036

CTG: Control of Volatile Organic Emissions from Petroleum Liquid Storage in External Floating Roof Tanks (Petroleum Storage CTG 2)

EPA Document Number: EPA-450/2-78-047

Conclusion:

Existing SIP-approved Section 50 of the AQRs meets the presumptive RACT level for the Petroleum Storage CTG source categories. Nevertheless, DES will adopt 40 CFR Part 60, Subparts K, Ka and Kb, and 40 CFR Part 63, Subpart BBBBBB into the SIP to satisfy CTG RACT requirements and improve rule effectiveness by promoting consistency and thoroughness in compliance obligations.

Discussion:

In 1977, EPA issued a CTG specific to storage of petroleum in fixed roof tanks (Petroleum Storage CTG 1). The presumptive RACT applies to storage tanks with more than 150,000 L (40,000 gal) of storage capacity containing liquids with a true vapor pressure greater than 10.5 kPa (1.5 psi). The recommended control is installation of an internal floating roof on fixed roof tanks that store petroleum with a true vapor pressure greater than 10.5 kPa. The rule exempts tanks with capacities less than 422,675 gal capacity if storing crude oil and condensate before custody transfer.

EPA issued the Petroleum Storage CTG 2 the following year. It applies to storage vessels with greater than a 40,000 gal storage capacity with an external floating roof containing liquids with a true vapor pressure greater than 10.5 Kpa (1.5 psi). The CTG requires a retrofit with secondary seals or equivalent.

Calney, a Part 70 Source subject to major source RACT, is the only stationary source that falls within this source category. RTP found no other emission sources in the ROP Inventory. However, the facilities identified in Section 5.4.4 and Table 32 could also operate fixed roof tanks that fall within this source category.

5.4.11 Potential VOC Emissions Reductions from Petroleum Storage CTG RACT

AQR Section 50 requires controls equivalent to EPA's presumptive RACT level (40,000-gal applicability; internal floating roof requirement). In 1977, 1980, and 1987, EPA issued NSPS that regulate the same universe of petroleum storage tanks as the Petroleum Storage CTG with equal or more stringent requirements (40 CFR Part 60, Subparts K, Ka, and Kb). EPA also promulgated storage tank requirements specifically for Bulk Gasoline Plants and Terminals in 40 CFR Part 63, Subpart BBBBBB. The following table displays the general control requirement of the NSPS and NESHAP that DES will adopt into the SIP to meet CTG RACT, and explains how the rules meet the existing requirements of AQR 50 and are as least as stringent as EPA's presumptive RACT.

Table 36. Comparison of NSPS and NESHAP to AQR and Presumptive RACT

Construction or Reconstruction Date	Regulatory Citation	Requirement	General Exemptions	Comparison with AQR 50	Comparison with CTGs
3/6/74-5/19/78	§ 60.112 Storage			Meets AQR 50.1 applicability threshold and control and vapor pressure	Meets or exceeds internal or external floating roof and seal requirement
6/11/73-5/19/78	Vessel	If true vapor pressure of the petroleum liquid > 570 mm Hg (11.1 psia), equip with a vapor control system or equivalent.	and production facility prior to custody transfer.	requirements, exemption not relevant to HA 212	and presumptive RACT includes similar exemption
5/19/78-7/23/1984*	§ 60.112a Storage Vessels	If true vapor pressure of ≥ 10.3 kPa (1.5 psia) but ≤ 76.6 kPa (11.5 psia), equip with external floating roof meeting specs, fixed roof with internal floating roof meeting specs, or vapor recovery system If true vapor pressure of	Each petroleum liquid storage vessel < 1,589,873 liters (420,000 gallons) used for petroleum or condensate stored,	Meets AQR 51.1 applicability threshold, vapor pressure, and control	Meets or exceeds internal or external floating roof and seal requirement and
		the petroleum liquid > 76.6 kPa (11.1 psia), equip with a vapor recovery system meeting 95% reduction by weight	processed, or treated before custody transfer to unaffected facility.	requirements.	presumptive RACT includes similar exemption
7/24/84 and after	§ 60.112b Storage Vessel	Vessel either with a design capacity ≥ 151 m3 (39890 gal) containing a VOL with maximum true vapor pressure ≥ 5.2 kPa but < 76.6 kPa or with a design capacity ≥ 75 m3 but < 151 m3 containing a VOL with maximum true vapor pressure ≥ 27.6 kPa but < 76.6 kPa, equip with fixed roof and internal flooting roof, external floating roof, or closed vent system with control device with 95% efficiency	Capacity ≥ to 151 m3 storing a liquid with a maximum true vapor pressure < 3.5 kPa or with a capacity ≥ 75 m3 but < 151 m3 storing a liquid with a maximum true vapor pressure < 15.0 kPa.	More stringent than AQR 50's applicability and control requirements. Although AQR does not exempt bulk gasoline plants, these tanks will be regulated under Subpart BBBBBB.	Meets or exceeds presumptive RACT controls, but CTGs do not discuss an exemption for
	design capacity ≥ 75 m3 which contains a VOL with maximum true vapor pressure ≥ 76.6 kPa, equip with closed vent system and 95% control or equivalent	Vessels located at bulk gasoline plants; vessels at gasoline service stations, vessels subject to Part 63, Subpart GGGG.	Equivalent to AQR 50's applicability and more stringent by specifying control efficiency of vapor control system. Although AQR does not exempt bulk gasoline plants, these tanks will be regulated under Subpart BBBBBB.	bulk gasoline plants	

Construction or Reconstruction Date	Regulatory Citation	Requirement	General Exemptions	Comparison with AQR 50	Comparison with CTGs
	§ 63.11086 Bulk Gasoline Plant Loading Tanks and Trucks	If > 250 gallon, load tank or truck using submerged fill that meets specifications by date installed, and all tanks, minimize gasoline spills and follow other work practices such as monthly leak inspection.	Gasoline storage tanks used only for dispensing gasoline in a manner consistent with tanks located at a gasoline station are not subject to any of the requirements in this subpart. These tanks must comply with subpart CCCCCC of this part.	Meets AQR 51.1.1 requirement to use submerged fill requirement	Meets presumptive RACT control Option 1
None	§ 63.11087 and Table 1 Bulk Gasoline Terminal Storage Tanks	If gasoline storage < 75 m3 or < 151 m3 and throughput ≤ 480 gal/day, equip with fixed roof, and set pressure relief valves to ≥ 18 inches of water	Aviation fuel loading at airports, marine tank loading,	Exceeds AQR 50.1 40,000 gal applicability threshold and imposes controls not required by AQR 50. AQR does not exempt airports, but airports will be regulated under AQR 102. Marine tank loading exemption not relevant to HA 212.	These tanks are not covered by presumptive RACT because they are below the applicability threshold.
	§ 63.11087 and Table 1 Bulk Gasoline Terminal Storage Tanks	If gasoline storage tank ≥ 75 m3, equip with close vent system with 95% control by weight, internal floating roof, or external floating roof; surge control tanks fixed roof with pressure vaccuum vent with pressure ≥ 0.5 inches of water	Bulk gasoline terminal not subject to control in Part 63, Subparts R or CC (Subpart R includes an equation for exemption, looks like CTG tanks all would be covered by Subpart CC)	Exceeds AQR 50.1 40,000 gal applicability threshold; and requires controls exceeding AQR 50 by specifying a control efficiency for the vapor collection system.	Exceeds presumptive RACT control level

Although there are some differences in applicability of the federal rules and the AQR and presumptive RACT, DES determined that collectively adopting all the federal rules fills the gaps left by any individual federal rule. For example, although Subpart Kb exempts bulk gasoline plants from its requirements, Subpart BBBBB regulates these tanks with requirements that are more stringent than the AQR and presumptive RACT, and while Subpart BBBBBB exempts aviation fuel loading at airports, DES will regulate these activities under new AQR 102.

Collectively, DES determined that EPA's federal rules represent the most current assessment of emissions control capabilities to meet the best available system of emission reduction under Section 111 of the Act, and the maximum achievable control technology ("MACT") under Section 112 of the Act. These regulatory standards exceed the statutory requirement for CTG RACT, and DES therefore concludes that adopting these rules into the SIP will more than satisfy CTG RACT requirements,

DES estimates no additional emissions reductions will result from the CTG RACT requirements, but there will also be no loss in emissions reduction from removing AQR 50.1 from the SIP. The

replacement of AQR 50 with the federal rules satisfies the Act's anti-backsliding provisions in Section 110(l) and 193 because the federal rules are equivalent or more stringent than the AQR and adopting the federal rules will improve rule effectiveness by consolidating regulatory compliance obligations under the more detailed compliance demonstration requirements of the federal rules.

5.4.12 Refinery Operations

CTG: Control of Refinery Vacuum Producing Systems, Wastewater Separators, and Process Unit Turnarounds (Refinery CTG)

EPA Document Number: EPA-450/2-77-025

CTG: Control of Volatile Organic Compound Leaks from Petroleum Refinery Equipment

EPA Document Number: EPA-450/2-78-036

Conclusion:

DES submits a negative declaration for these Refinery CTG source categories because there are no identified stationary sources in the source category operating within HA 212.

Discussion:

In 1977, EPA issued a CTG to recommend emissions controls for vacuum-producing systems, wastewater separators, and process unit turnarounds at petroleum refineries. It followed this CTG with an additional guideline document for control equipment leaks from petroleum refinery equipment.

RTP was unable to identify specific SCC codes that correspond to these operations. A search of business licenses identified no companies that may fall within this category. The U.S. Energy Information Administration also identifies no petroleum refineries operating in Nevada (<u>U.S. Number and Capacity of Petroleum Refineries</u>, accessed 11/29/2022).

6.0 SUMMARY OF FINDINGS

Table 37 summarizes the findings in Chapter 5.

Table 37. Summary of CTG RACT Analysis: Certification of No Sources Operating in HA 212 or Projected Emission Reduction (tpd) from CTG RACT Rules

Source Category	ств	EPA Doc#	Emissions Reductions Estimate (tpd)	CTG Finding
	su	RFACE COATING OPER	ATIONS	
Aerospace Manufacturing and Rework	Control of VOC Emissions from Coating Operations at Aerospace Manufacturing and Rework Operations	EPA-453/R-97-004	N/A	No sources in the category; submitting negative declaration
Automobile and Light Duty Trucks	Control of Volatile Organic Emissions from Existing Stationary Sources - Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks	EPA-450/2-77-008	N/A	No sources in category; submitting negative declaration
	Control Techniques Guidelines for Automobile and Light-Duty Truck Assembly Coatings	EPA-453/R-08-006	N/A	
Autobody Refinishing	Reduction of Volatile Organic Compound Emissions from Automobile Body Refinishing	EPA-453/R-94-031	N/A	Does not define RACT; EPA promulgated federal rule that supersedes CTG RACT.

	•	•		
	Reduction of Volatile Organic Compound Emissions from Automobile Refinishing	EPA-450/3-88-009		
Coils	Control of Volatile Organic Emissions from Existing Stationary Sources - Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks	EPA-450/2-77-008	N/A	No sources in category; submitting negative declaration
Fabric	Control of Volatile Organic Emissions from Existing Stationary Sources - Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)	EPA-450/2-77-008	N/A	No sources in category; submitting negative declaration
Flat Wood Paneling	Control of Volatile Organic Emissions from Existing Stationary Sources, Volume VII: Factory Surface Coating of Flat Wood Paneling (Flat Wood Paneling CTG)	EPA-450/2-77-008	N/A	No sources in category; submitting negative declaration
	Control Techniques Guidelines for Flat Wood Paneling Coatings	EPA-453/R-06-004		

Large Appliances	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume V: Surface Coating of Large Appliances (Large Appliance CTG 1)	EPA-450/2-77-034	N/A	No sources in category; submitting negative declaration
	Control Techniques Guidelines for Large Appliance Coatings (Large Appliance CTG 2)	EPA 453/R-07-004		
Magnet Wire - Surface Coating	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume IV: Surface Coating of Insulation of Magnet Wire	EPA-450/2-77-033	N/A	No sources in category; submitting negative declaration
Metal Cans	Control of Volatile Organic Emissions from Existing Stationary Sources - Volume II: Surface Coating of Cans, Coils, Paper, Fabrics, Automobiles, and Light-Duty Trucks (multicategory CTG)	EPA-450/2-77-008	N/A	No sources in category; submitting negative declaration
Metal Furniture	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume III: Surface Coating of Metal Furniture (Metal Furniture CTG 1)	EPA-450/2-77-032	N/A	No sources in category; submitting negative declaration
	Control Techniques Guidelines for Metal Furniture Coatings (Metal Furniture CTG 2)	EPA 453/R-07-005		

Misc. Metal and	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume VI: Surface Coating of Miscellaneous Metal Parts and Products	EPA-450/2-78-015	0.13	Submitting CTG RACT Rule Certifying existing SIP-approved RACT rule No sources in category; submitting negative declaration	
Plastic Parts	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume VI: Surface Coating of Miscellaneous Metal Parts and Products	EPA 453/R-08-003			
Paper	Surface Coating of Paper	EPA-450/2-77-008	0		
r apor	Paper, Film, and Foil Coatings	EPA 453/R-07-003	Ç		
Boat and	Control Techniques Guidelines for Shipbuilding and Ship Repair Operations	61 FR-44050 8/27/96			
Shipbuilding	Control Techniques Guidelines for Fiberglass Boat Manufacturing Materials	EPA 453/R-08-004	N/A		
Undefined	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume I: Control Methods for Surface Coating Operations	EPA-450/2-76-028	N/A	Does not define RACT	
Wood Furniture	Control of Volatile Organic Compound Emissions from Wood Furniture Manufacturing Operations (Wood Furniture CTG)	EPA-453/R-96-007	N/A	No sources in category; submitting negative declaration	
SOLVENT USERS					
Degreasing	Control of Volatile Organic Emissions from Solvent Metal Cleaning	EPA-450/2-77-022	0.33	Submitting CTG RACT Rule	

Dry Cleaners	Control of Volatile Organic Emissions from Perchloroethylene Dry Cleaning Systems	EPA-450/2-78-050	N/A	CTG no longer applicable
Dry Cleaners	Control of Volatile Organic Emissions from Large Petroleum Dry Cleaners	EPA-450/3-82-009	N/A	No sources in category; submitting negative declaration
Industrial Adhesives	Control Techniques Guidelines for Miscellaneous Industrial Adhesives	EPA 453/R-08-005	0.90	Submitting CTG RACT Rule
Industrial Cleaning Solvents	Industrial Cleaning Solvents	EPA-453/R-06-001	3.74	Submitting CTG RACT Rule
Craphia Arta	Control of Volatile Organic Emissions from Existing Stationary Sources – Volume VIII: Graphic Arts-Rotogravure and Flexography	EPA-450/2-78-033	2.02	Submitting CTG RACT Rule
Graphic Arts	Control Techniques Guidelines for Flexible Packaging Printing	EPA-453/R-06-003, 2006/09	2.03	
	Offset Lithographic Printing and Letterpress Printing	EPA-453/R-06-002, 2006/09		
		CHEMICAL PROCESS	ES	
Pharmaceuticals	Control of Volatile Organic Emissions from Manufacture of Synthesized Pharmaceutical Products	EPA-450/2-78-029	N/A	No sources in category; submitting negative declaration
Polymer and Resins	Control of Volatile Organic Compound Emissions from Manufacture of High-Density Polyethylene, Polypropylene, and Polystyrene Resins	EPA-450/3-83-008		No sources in category; submitting
1 digities and recoilis	Control of Volatile Organic Compound Leaks from Synthetic Organic Chemical and Polymer Manufacturing Equipment	EPA-450/3-83-006	INIT	negative declaration

Rubber Tires	Control of Volatile Organic Emissions from Manufacture of Pneumatic Rubber Tires (Rubber Tire CTG)	EPA-450/2-78-030	N/A	No sources in category; submitting negative declaration
	Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical Manufacturing Industry (SOCMI CTG 2)	EPA-450/4-91-031		
SOCMI	Control of Volatile Organic Compound Emissions from Air Oxidation Processes in Synthetic Organic Chemical Manufacturing Industry (SOCMI CTG)	EPA-450/3-84-015	N/A	No sources in category; submitting negative declaration
	Control of Volatile Organic Compound Leaks from Synthetic Organic Chemical and Polymer Manufacturing Equipment	EPA-450/3-83-006		
		PETROLEUM PROCES	SES	
Cutback Asphalt	Control of Volatile Organic Emissions from Use of Cutback Asphalt	EPA-450/2-77-037	0.62 (or 0.66 countywide)	Submitting CTG RACT rule
Gasoline Terminals	Control of Hydrocarbons from Tank Truck Gasoline Loading Terminals	EPA-450/2-77-026	0	Submitting CTG
and Bulk Plants	Control of Volatile Organic Emissions from Bulk Gasoline Plants	EPA-450/2-77-035	U	RACT rule to replace Section 51 and 60.1.

	Control of Volatile Organic Compound Leaks from Gasoline Tank Trucks and Vapor Collection Systems	EPA-450/2-78-051	0	
Gasoline Service	Design Criteria for Stage I Vapor Control Systems – Gasoline Service Stations	EPA-450/R-75-102	0	Submitting CTG RACT rule to replace Section 52
Oil and Natural Gas	Control of Volatile Organic Compound Equipment Leaks from Natural Gas/Gasoline Processing Plants	EPA-450/3-83-007	N/A	No sources in the category; submitting
	Control Techniques Guidelines for the Oil and Natural Gas Industry	EPA-453/B-16-001		negative declaration
Petroleum Storage	Control of Volatile Organic Emissions from Petroleum Liquid Storage in External Floating Roof Tanks (Petroleum Storage CTG)	EPA-450/2-78-047	0	Submitting CTG RACT rule to replace
T outlied in old rage	Control of Volatile Organic Emissions from Storage of Petroleum Liquids in Fixed-Roof Tanks	EPA-450/2-77-036	, and the second	Section 50
Refinery	Control of Refinery Vacuum Producing Systems, Wastewater Separators, and Process Unit Turnarounds (Refinery CTG)	EPA-450/2-77-025	N/A	No sources in category; submitting negative declaration

	Control of Volatile Organic Compound Leaks from Petroleum Refinery Equipment	EPA-450/2-77-025	N/A	
Total Potential CTG RACT VOC Emissions Reductions (tpd)			7.75	5

7.0 REFERENCES

DES 2023. "2017 and 2023 Emission Inventories for the Clark County Ozone SIP," Las Vegas, NV: Clark County Department of Environment and Sustainability, Division of Air Quality.

DES 2021. "Part 70 Technical Support Document, Application for Renewal of Part 70 Operating Permit." Las Vegas, NV: Clark County Department of Environment and Sustainability, Division of Air Quality.

EPA 2005. "Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter National Ambient Air Quality Standards (NAAQS) and Regional Haze Regulations." U.S. EPA, EPA/R-05-001 dated August 2005.

EPA 2021a. "State Review Framework Clark County Department of Environment and Sustainability Clean Air Act Implementation in Calendar Year 2019," U.S. EPA, Region 9 dated January 7, 2021.

EPA 2021b. "2017 National Emissions Inventory: January 2021 Updated Release, Technical Support Document." Research Triangle Park.: U.S. Environmental Protection Agency. https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-technical-support-document-tsd.

EPA 2023. "2020 National Emissions Inventory Technical Support Document: Solvents- All Other Solvents." Research Triangle Park, U.S. Environmental Protection Agency EPA-454/R-23-001ff, March 2023.

EPA 2023. "2020 National Emissions Inventory Technical Support Document: Solvents – Consumer and Commercial: Asphalt Paving." Research Triangle Park: U.S. Environmental Protection Agency. EPA-454/R-23-001ee, March 2023.

OTC 2016. "OTC Model Regulations for Nitrogen Oxides (NOx) and Photo-reactive Volatile Organic Compounds Technical Support Document," Ozone Transport Commissions, dated Aug. 25, 2016).

Ramboll 2024. "2017 and 2016 Emission Inventories for the Clark County Ozone Nonattainment Area." Ramboll Americas Engineering Solutions, Inc dated April 2024.

Rhoads, Richard G. 1978. "Cutback Asphalt - Acceptable RACT Regulation." 12/19/1978, VOC141219781. Memorandum to Director, Air and Hazardous Materials Division, Regions I-X. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. https://www3.epa.gov/ttn/naaqs/aqmguide/collection/Doc_0049_VOC141219781.pdf.

Rhoads, Richard G. 1979a. "Cutback Asphalt VOC Regulations." 03/06/1979, VOC140306791. Memorandum to Director, Air and Hazardous Materials Divisions, Regions I-X. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and

Standards.

https://www3.epa.gov/ttn/naaqs/aqmguide/collection/Doc 0064 VOC140306791.pdf.

Rhoads, Richard G. 1979b. "Clarification for Final SIP Actions on Asphalt Regulations." 10/04/1979, VOC141004791. Memorandum to Director, Air and Hazardous Materials Division, Regions I-X. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. https://www3.epa.gov/ttn/naaqs/aqmguide/collection/Doc 0087 VOC141004791.pdf.